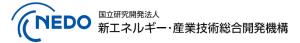
傾斜地設置型/営農型/水上設置型


太陽光発電システムの設計・施工ガイドライン 2023 年版

技術資料:

水上設置型太陽光発電設備の風洞実験

この成果物は、国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託業務 (JPNP20015) 「太陽光発電主力電源化推進技術開発/太陽光発電の長期安定電源化技術開発」事業 の結果として得られたものです。

2023年4月28日

水上設置型太陽光発電設備の風洞実験

1. 概要

近年、太陽光発電設備 (PV) の導入が進み、地上設置だけでなく水面を利用した水上設置の事例が見られるようになった。PV の設計用風荷重については、日本工業規格 JIS C 8955:2017「太陽電池アレイ用支持物の設計用荷重算出方法」において、地上設置 PV, 勾配屋根設置 PV、陸屋根設置 PV の風力係数が示されているが、水上設置の PV については示されていない。そこで、水上設置型 PV の風力係数の評価を行う目的で、縮尺模型を用いた風圧実験を行った。なお、風洞実験方法等は、「実務者のための建築物風洞実験ガイドブック(日本建築センター、2008)」および建築基準法(施行令 87 条、告示第 1454、1458 号)ならびに日本建築学会の「建築物荷重指針・同解説 (2015)」に準拠した。

2. 対象構造物

対象構造物は、水上型 PV 設備である。想定した PV 設備の概要を表 2-1 に、平面図を図 2-1 に示す。本実験では、北に正対する風向を 0 度とした。アイランド(フロート群)は、太陽電池モジュール (以後、モジュールと称する) が設置されているメインフロート (記号: M*-*) とモジュールが設置されていないサブフロート (記号: Sa*-*、Sb*-*、Sc*-*)から構成されており、本実験ではメインフロートが 7 列×7 列で配置されている状態を想定した。また、メインフロートの外周にはサブフロートを配置している。

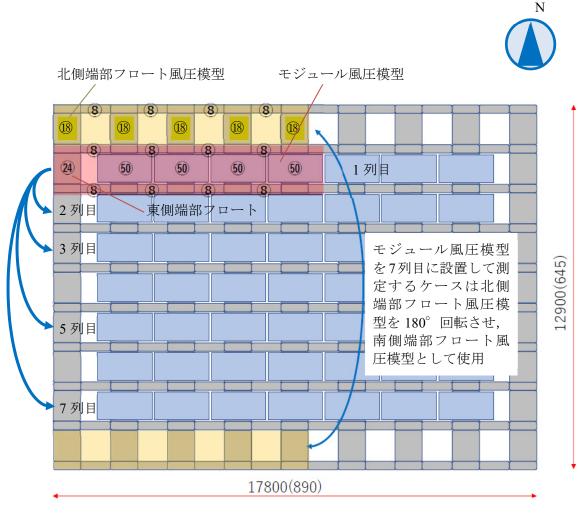
表 2-1 想定した太陽光発電概要

形式 小型フロート (1 フロート1 モジュール)

モジュール 72 セル (2.0m×1.0m)

アイランド*のサイズ 17.8m×12.9m (メインフロート7列×7行)

モジュール角度 5度,10度,20度

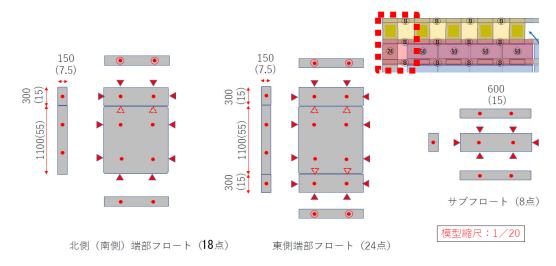

*:フロートを連結した状態(フロート群)

Sa0-1	Sb0-	-1 Sa0-2	Sb0	Sa0-3	Sb0	Sa0-4	SbC	Sa0-5							
Sc0-1		Sc0-2		Sc0-3		Sc0-4		Sc0-5							
Sa1-1	Sb1-	-1 Sa1-2	Sb1-2	Sa1-3	Sb1-3	Sa1-4	Sb1-4	Sa1-5							
Sc1-1		M1-1		M1-2		M1-3		M1-4							
Sa2-1	Sb2-	-1 Sa2-2	Sb2-2	Sa2-3	Sb2-3	Sa2-4	Sb2-4	Sa2-5							
Sc2-1		M2-1		M2-2		M2-3		M2-4							
Sa3-1	Sb3-	-1 Sa3-2	Sb3-2	Sa3-3	Sb3-3	Sa3-4	Sb3-4	Sa3-5							
Sc3-1		M3-1		M3-2		M3-3		M3-4							
Sa4-1	Sb4-	-1 Sa4-2	Sb4-2	Sa4-3	Sb4-3	Sa4-4	Sb4-4	Sa4-5							
											_		_		
Sa5-1	Sb5-	-1 Sa5-2	Sb5-2	Sa5-3	Sb5-3	Sa5-4	Sb5-4	Sa5-5							
Sc5-1		M5-1		M5-2		M5-3		M5-4							
Sa6-1	Sb6-	-1 Sa6-2	Sb6-2	Sa6-3	Sb6-3	Sa6-4	Sb6-4	Sa6-5							
											_				
Sa7-1	Sb7-	-1 Sa7-2	Sb7-2	Sa7-3	Sb7-3	Sa7-4	Sb7-4	Sa7-5							
Sc7-1		M7-1		M7-2		M7-3		M7-4							
Sa8-1	Sb8-	-1 Sa8-2	Sb8-2	Sa8-3	Sb8-3	Sa8-4	Sb8-4	Sa8-5							
Sc8-1		Sc8-2		Sc8-3		Sc8-4	図 2		平面图	ž					
Sa9-1	Sb9	-1 Sa9-2	Sb9-2	Sa9-3	Sb9-3	Sa9-4	Sb9-4	Sa9-5				Ĺ		Ĭ	

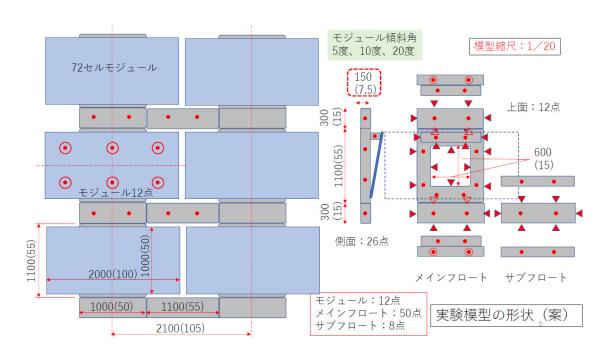
3. 実験模型

3.1 実験模型概要

本実験では、実験内容、使用風洞、計画地の周辺状況等を考慮して、縮尺率 1/20 の実験模型とした。風圧実験模型は、モジュールの傾斜角度 5 度、10 度、20 度の 3 体作成し、1 体につき、風圧測定用の模型は北側(南側)端部フロートと東側端部フロートを含むモジュール風圧模型の 2 種類とした(図 3-1 参照)。



単位:mm


図 3-1 実験模型概要

3.2 風圧模型ならびに風圧測定点

風圧実験模型には 410 点の風圧測定点を配設した。測定点位置を図 3-2 に、測定点番号および風力係数の計算点番号 (600 点番台) を図 3-3 と図 3-4 に示す。

(a) 端部フロート

(b) モジュール, メインフロート, サブフロート

図 3-2 風圧測定点位置

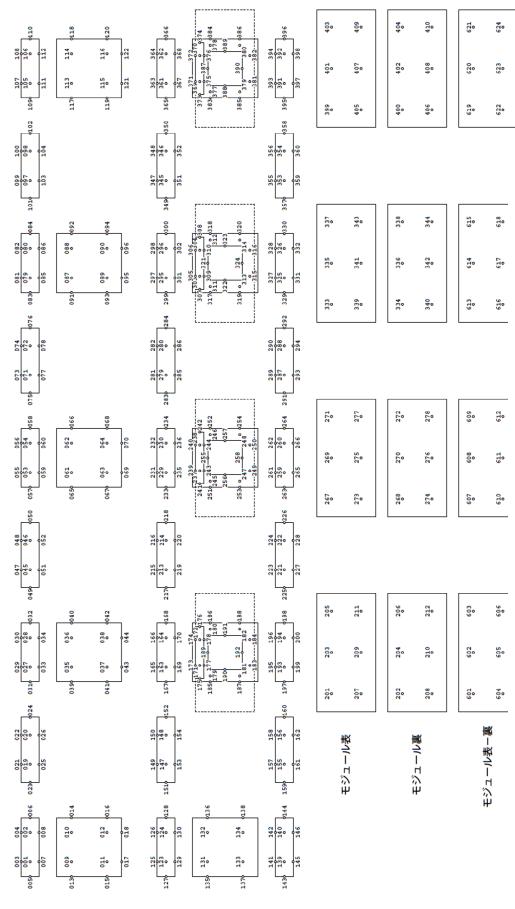
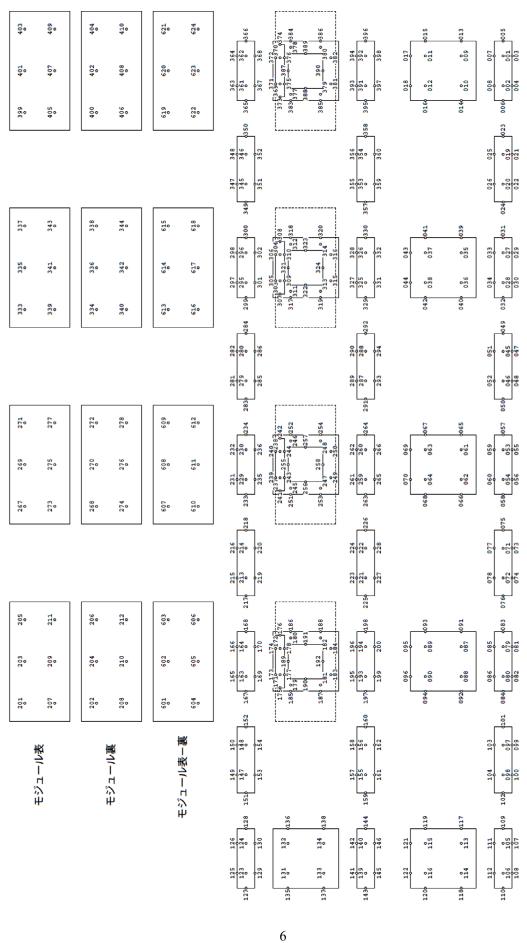



図 3-3 結果表示フォーマット (1 列目,2 列目,3 列目,5 列目)

結果表示フォーマット (7 列目)

巡 3-4

4. 使用風洞および風洞気流

4.1 使用風洞

本実験に用いた風洞は図 4-1 に示す大成建設(株)技術センターの風洞である。

■仕様・機能

形式	室内回流式エッフェル型風洞
測定部寸法	幅:3.2m, 高さ:2.0m, 長さ:23.8m
ターンテーブル	直径:3.0m
最大風速	23m/s
送 風 機	軸流送風機 6 台

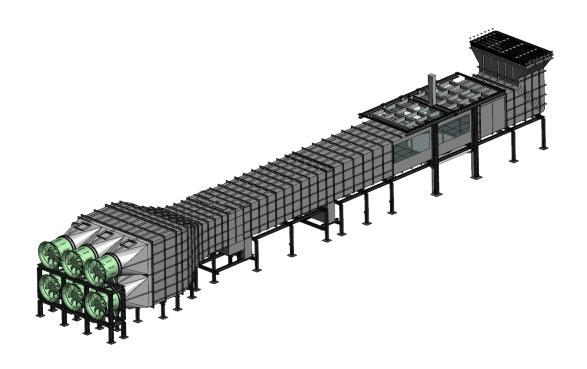


図 4-1 使用風洞の概要

4.2 風洞気流

一般に平均風速の鉛直分布は次式で表わされる。

$$U_z = U_r \left(\frac{Z}{Z_r}\right)^{\alpha}$$

ただし、 U_z :高さ Z(m)における平均風速(m/s) U_r :基準高さ $Z_r(m)$ における平均風速(m/s) α :風速のべき指数分布のべき指数

べき指数 α が平均風速の分布形状を決定づける定数であり、建設省告示第 1454 号(平成 12 年 5 月 31 日)及び日本建築学会の建築物荷重指針・同解説(2015)(以下荷重指針と呼ぶ)には地表面粗度の状態に応じて定められている(表 4-1~表 4-2 参照)。

本実験では建設省告示に従い、建設地の地表面粗度区分をIIとし、 $\alpha = 0.15$ を目標として風洞気流を作成した。

建設省告示には風の乱れに関する規定が定められていないため、風速の乱れの度合いを表す指標である乱れの強さ、渦の平均的な大きさを表す指標である乱れのスケールについては、荷重指針の地表面粗度区分IIに準拠した気流を風洞内に作成した。

実験気流の平均風速と乱れの強さの鉛直分布を図 4-2 に示す。乱れの強さは、高さ 0.2m 相当で 23%であった。平均風速の鉛直分布指数は、風洞床上高さ 25cm 以下において目標値の 0.15 に近似している。図 4-3 には、荷重指針の乱れのスケール L_u (高さ 5m で 40.8m)を 1/20 (本実験の模型縮尺率)としたパワースペクトルを示す。なお、乱れのスケールは 5m 高さ相当で 66cm であった。

実験風速は実験内容等を勘案して、モジュール平均高さ相当で7.5m/s 程度とした。

表 4-1 地表面粗度区分 (平成 12 年 5 月 31 日建設省告示第 1454 号)

地表面粗度区分		α
I	都市計画区域外にあって,極めて平坦で障害物がないものと して特定行政庁が規則で定める区域	0.10
П	都市計画区域外にあって地表面粗度区分 I の区域以外の区域 (高さが 13m 以下の場合を除く.) 又は都市計画区域内にあって地表面粗度区分IVの区域以外の区域のうち,海岸線又は 湖岸線(対岸までの距離が 1,500m 以上のものに限る.以下同 じ.) 間での距離が 500m 以内の区域(ただし、建物高さが 13m 以下である場合又は当該海岸線若しくは湖岸線からの距 離が 200m を超え,かつ、建物の高さが 31m 以下である場合 を除く.)	0.15
Ш	地表面粗度区分 I , II 又はIV以外の区域	0.20
IV	都市計画区域内にあって,都市化が極めて著しいものとして特定行政庁が規則で定める区域.	0.27

表 4-2 地表面粗度区分(荷重指針, 2015年)

地表面	i粗度区分	建設地および風上側地域の地表面の状況	$Z_b(m)$	$Z_{\rm G}({\rm m})$	
滑	Ι	海面または湖面のような, ほとんど障害物のな い地域	3	250	0.10
1	П	田園地帯や草原のような農作物程度の障害物がある地域,樹木・低層建築物などが散在している平坦地		350	0.15
	Ш	樹木・低層建築物が多数存在する地域,あるい は中層建築物(4~9階)が散在している地域	10	450	0.20
\downarrow	IV	中層建築物(4~9 階)が主となる市街地	20	550	0.27
粗	V	高層建物(10 階以上)が密集する市街地	30	650	0.35

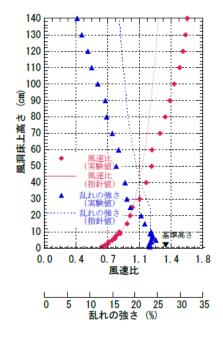


図 4-2 風洞気流の鉛直分布

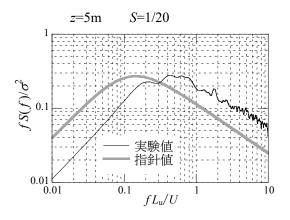
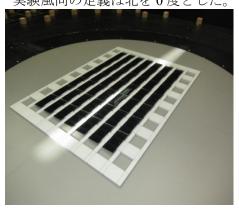
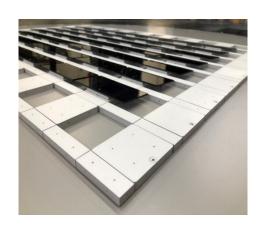


図 4-3 風洞気流のパワースペクトル密度

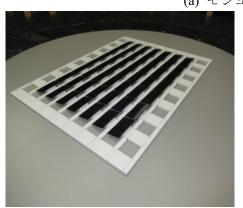
5. 実験方法

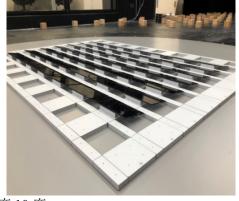
5.1 実験条件

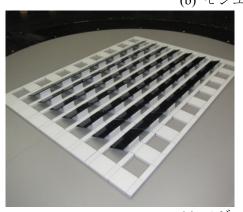

風圧実験の実験条件を以下に示す。

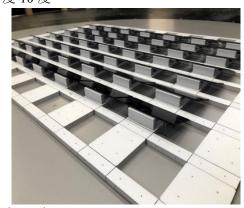

実験風向 0度~345度(15度ピッチの24風向)

模型状況 モジュール傾斜角度 5 度、10 度、20 度 (写真 5-1)


実験ケース 傾斜角度3種、配置列5種(図3-1参照)、合計15ケース


実験風向の定義は北を0度とした。




(a) モジュールの傾斜角度5度

(b) モジュールの傾斜角度 10 度

(c) モジュールの傾斜角度 20 度

写真 5-1 模型状況

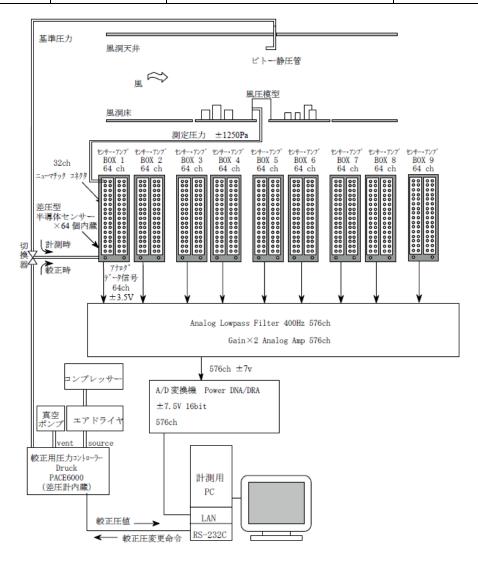
5.2 測定方法

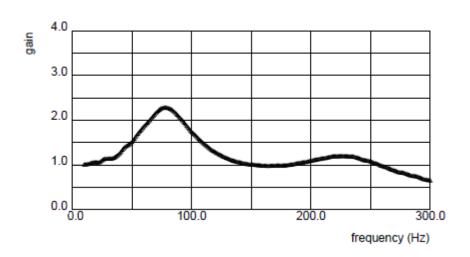
5.2.1 測定装置

風圧の測定には表 5-1 に示す機器を用いたシステムを使用した。本システムは 576 点まで同時に風圧を測定することが可能である(図 5-1 参照)。

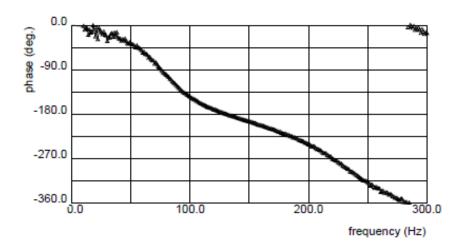
設計装置	メーカー、型番	諸元	備考
風圧センサー	(株) クローネ	定格±1,250Pa, センサ出力±3.5V, 応答	半導体センサー 576ch
		時間 1ms	
基準圧発生機	Druck PEACE6000	±6.86kPa,分解能<0.005%FS	正圧·負圧用外部圧力源
A/D 変換器	Power DNA/DRA	分解能 16bit,max4KHz sampling	24ch×24 台,同期接続

表 5-1 測定に用いた機器




図 5-1 多点同時風圧計測システムのハード構成図

5.2.2 圧力導管の周波数応答特性


風圧は圧力タップ(内径 1.0mm、外径 1.87mm、長さ 11.5mm)、ビニールチューブ(内径 1.6mm、外径 2.5mm、長さ 600mm)を介して圧力計のセンサーに導かれる。したがって、これら圧力 導管において共振現象(Helmholtz 共振)を生じるため、これを補正する必要がある。本実験 では圧力導管の周波数応答特性(図 5-2 参照)をあらかじめ調べておき風圧測定後に補正した。この際、180Hz のローパスフィルターを施した。時間の縮尺率 λ_1 、長さの縮尺率 λ_1 、風速の縮尺率 λ_1 には

$\lambda t = \lambda l / \lambda_u$

の関係があり、本実験では $\lambda_1 = 1/20$ 、 $\lambda_u = 1/4.0$ 程度(設計風速は 30m/s を想定)となり、 $\lambda_t = 1/5$ であるので、実大相当で周波数 36Hz 程度までの変動が測定できていることになる。

(b) Phase

図 5-2 圧力導管の周波数応答特性 (チューブ長:600mm)

5.2.3 測定条件

図 5-3 には風洞ならびに風圧測定システムをブロック図として示す。模型に作用する風圧は風洞内の静圧(基準静圧)との差圧として次のサンプリング条件で測定した。

○サンプリング間隔:0.004s(250Hz)

○サンプリング時間:131.072s(32768data/ch)×5回

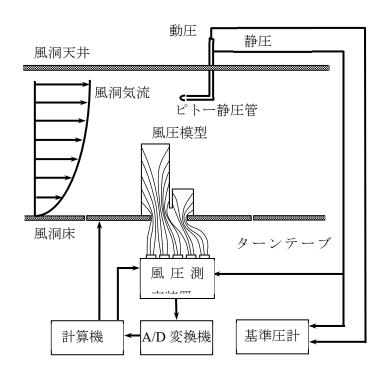


図 5-3 風洞ならびに風圧測定システム

5.3 解析方法

風洞実験で測定されたフロートおよびモジュールの表面と裏面の外圧 P_e は外圧係数 C_{pe} として評価した。モジュールに作用する風力 P_f は、モジュールの表面圧と裏面圧の差圧を風力係数 C_f として評価した。

5.3.1 外圧係数

外圧係数は風洞実験による外圧を次式で無次元化したものである。

 $C_{pe} = (P_e - P_s) / q_{He}$

ここに、 C_{pe} : 外圧係数、 P_e : 外圧、 P_s : 基準静圧、

q_{He}: モジュールの平均高さにおける平均速度圧

実験では、差圧計により $(P_e - P_s)$ を直接測定した。

外圧係数は風速変動等により時々刻々と変化する値(瞬時風圧係数)であり、その平均値等 を次のように呼ぶ。

平均外圧係数 Cpem: 瞬時外圧係数の平均値

変動外圧係数 Cpes: 瞬時外圧係数の標準偏差

最大外圧係数 Cpe max:瞬時外圧係数の正圧側の最大値

最小外圧係数 Cpe min:瞬時外圧係数の負圧側の最大値

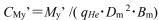
また、 $C_{pe\ max}$ 、 $C_{pe\ min}$ を総称してピーク外圧係数 $\hat{C}_{pe\ }$ とよぶ。

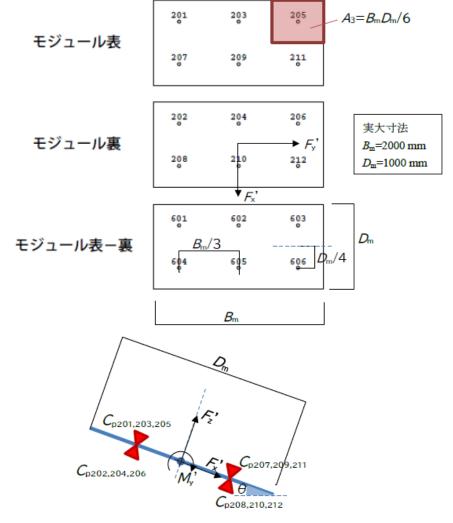
本実験では、各測定点で得られた瞬間値の平均化時間を実物換算で 0.2 秒相当、評価するデータ長さを実物換算で 10 分相当とした。測定データは実大約 50 分に相当するので、 $C_{pe\ s}$ 、 $C_{pe\ max}$ 、 $C_{pe\ min}$ 、 C_{pm} を 5 波のアンサンブル平均(10 分毎に分析した結果の平均)として評価した。

5.3.2 モジュールの風力係数

風力係数は風洞実験によるモジュールの表面圧と裏面圧との差圧を無次元化したものである。

 $C_f = C_{pe} - C_{pi}$


ここに、 C_f : 風力係数、 C_{pe} : 表面の外圧係数、 C_{pi} : 裏面の外圧係数、


外圧係数と同様に、風力係数についても平均、変動、最大、最小、ピーク風力係数がそれぞれ C_{fm} 、 C_{fs} 、 C_{fmax} 、 C_{fmin} 、 \hat{C}_f として定義される。向きは下向きが正となる。

5.3.3 モジュールの風力係数、モーメント係数 (モジュールの傾斜角度を基準)

図 5-4 に示す方向定義に従いモジュールの z 方向の風力係数 F_z 'と x および y 方向のモーメント係数 M_x 'および M_y 'を算出する。

$$\begin{split} F_{z}' &= q_{He} \cdot (-C_{p601} - C_{p602} - C_{p603} - C_{p604} - C_{p605} - C_{p606}) \cdot A_{3} \\ M_{x}' &= q_{He} \cdot (C_{p601} + C_{p604} - C_{p603} - C_{p606}) \cdot A_{3} \cdot B_{m}/3 \\ M_{y}' &= q_{He} \cdot (-C_{p601} - C_{p602} - C_{p603} + C_{p604} + C_{p605} + C_{p606}) \cdot A_{3} \cdot (D_{m}/4) \\ C_{Fx}' &= 0. \qquad (F_{x}' = 0.) \\ C_{Fy}' &= 0. \qquad (F_{y}' = 0.) \\ C_{Fz}' &= F_{z}' / (q_{He} \cdot D_{m} \cdot B_{m}) \\ C_{Mx}' &= M_{x}' / (q_{He} \cdot D_{m} \cdot B_{m}^{2}) \end{split}$$

※図中の数値は測定点番号(200点番台)と計算点番号(600点番台)

図 5-4 記号および方向の定義

5.3.4 風力係数, モーメント係数 (水面を基準)

図 2-1 に示したフロート Sa、Sb、Sc および穴あきフロートを含むモジュール M の風力係数とモーメント係数は、それぞれ図 5-5、図 5-6、図 5-7 に示す方向定義に従い算出する。

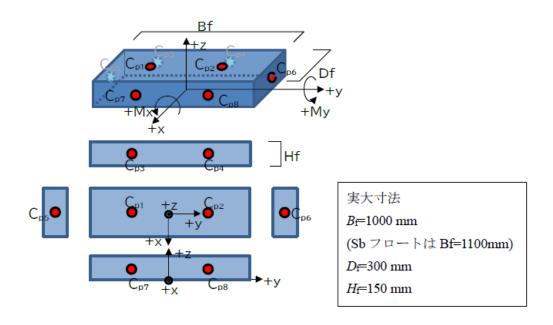


図 5-5 フロート Sa および Sb における方向定義

$$\begin{split} F_{x} &= q_{He} \cdot (C_{p3} + C_{p4} - C_{p7} - C_{p8}) \cdot (H_{f} \cdot B_{f}/2) \\ F_{y} &= q_{He} \cdot (C_{p5} - C_{p6}) \cdot (H_{f} \cdot D_{f}) \\ F_{z} &= q_{He} \cdot (-C_{p1} - C_{p2}) \cdot (B_{f}/2 \cdot D_{f}) \\ M_{x} &= q_{He} \cdot (C_{p1} - C_{p2}) \cdot (B_{f}/2 \cdot D_{f}) \cdot (B_{f}/4) + q_{He} \cdot (-C_{p5} + C_{p6}) \cdot (H_{f} \cdot D_{f}) \cdot (H_{f}/2) \\ M_{y} &= q_{He} \cdot (C_{p3} + C_{p4} - C_{p7} - C_{p8}) \cdot (B_{f}/2 \cdot H_{f}) \cdot (H_{f}/2) \end{split}$$

$$C_{\text{Fx}} = F_{\text{x}} / (q_{\text{He}} \cdot H_{\text{f}} \cdot B_{\text{f}})$$

$$C_{\text{Fy}} = F_{\text{y}} / (q_{\text{He}} \cdot H_{\text{f}} \cdot D_{\text{f}})$$

$$C_{\text{Fz}} = F_{\text{z}} / (q_{He} \cdot B_{\text{f}} \cdot D_{\text{f}})$$

$$C_{\text{Mx}} = M_{\text{x}} / (q_{\text{He}} \cdot B_{\text{f}}^2 \cdot D_{\text{f}})$$

$$C_{\text{My}} = M_{\text{y}} / (q_{\text{He}} \cdot B_{\text{f}} \cdot D_{\text{f}}^2)$$

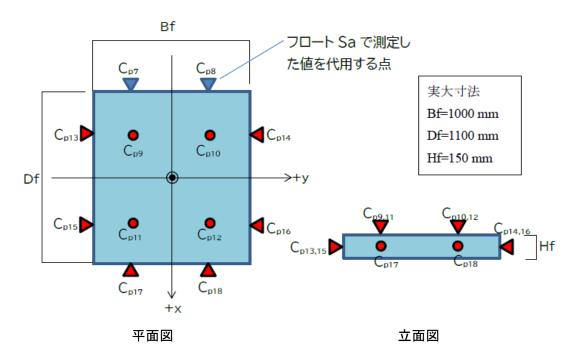


図 5-6 フロート Sc における風向定義と測定点位置

$$\begin{split} F_{x} &= q_{He} \cdot (C_{p7} + C_{p8} - C_{p17} - C_{p18}) \cdot (H_{f} \cdot B_{f}/2) \\ F_{y} &= q_{He} \cdot (C_{p13} + C_{p15} - C_{p14} - C_{p16}) \cdot (H_{f} \cdot D_{f}/2) \\ F_{z} &= q_{He} \cdot (-C_{p9} - C_{p10} - C_{p11} - C_{p12}) \cdot (B_{f}/2 \cdot D_{f}/2) \\ M_{x} &= q_{He} \cdot (C_{p9} - C_{p10} + C_{p11} - C_{p12}) \cdot (B_{f}/2 \cdot D_{f}/2) \cdot (B_{f}/4) \\ &+ q_{He} \cdot (-C_{p13} - C_{p15} + C_{p14} + C_{p16}) \cdot (H_{f} \cdot D_{f}/2) \cdot (H_{f}/2) \\ M_{y} &= q_{He} \cdot (-C_{p9} - C_{p10} + C_{p11} + C_{p12}) \cdot (B_{f}/2 \cdot D_{f}/2) \cdot (D_{f}/4) \\ &+ q_{He} \cdot (C_{p7} + C_{p8} - C_{p17} - C_{p18}) \cdot (B_{f}/2 \cdot H_{f}) \cdot (H_{f}/2) \end{split}$$

$$C_{\text{Fx}} = F_{\text{x}} / (q_{He} \cdot H_{\text{f}} \cdot B_{\text{f}})$$

$$C_{\text{Fy}} = F_{\text{y}} / (q_{He} \cdot H_{\text{f}} \cdot D_{\text{f}})$$

$$C_{Fz} = F_z / (q_{He} \cdot B_f \cdot D_f)$$

$$C_{\text{Mx}} = M_{\text{x}} / (q_{He} \cdot B_{\text{f}}^2 \cdot D_{\text{f}})$$

$$C_{\text{My}} = M_{\text{v}} / (q_{He} \cdot B_{\text{f}} \cdot D_{\text{f}}^2)$$

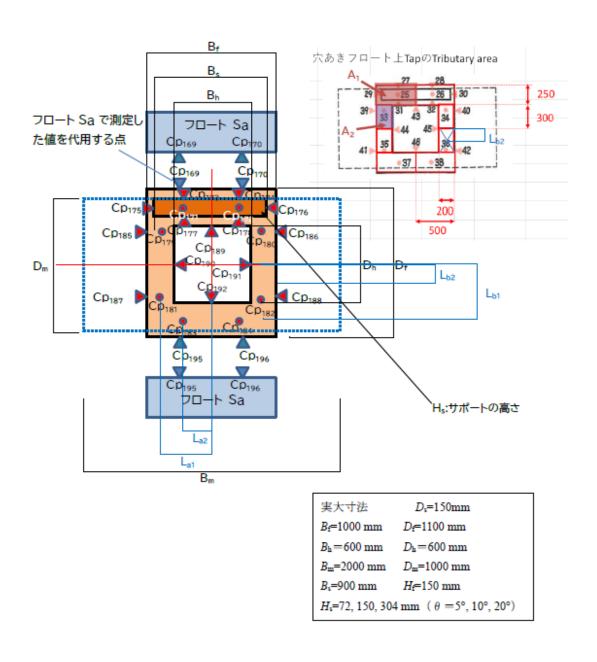


図 5-7 穴あきフロートにおける風向定義と測定点位置

$$C_{p 171}$$
' \Rightarrow (0.4 $C_{p 171}$ +0.25 $C_{p 173}$ +0.25 $C_{p 177}$ +0.1 $C_{p 175}$)

 $C_{p 172}' \Rightarrow (0.4 C_{p 172} + 0.25 C_{p 174} + 0.25 C_{p 178} + 0.1 C_{p 176})$

負担面積の割合で配分

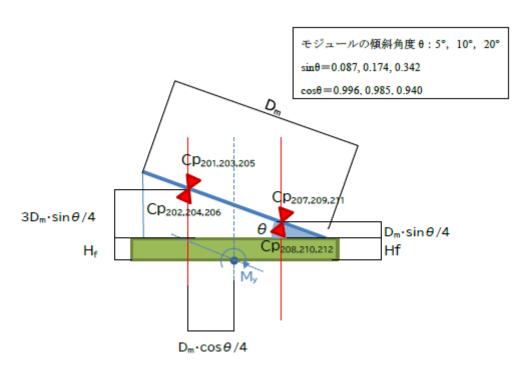


図 5-8 モジュールにおける風向定義と測定点位置

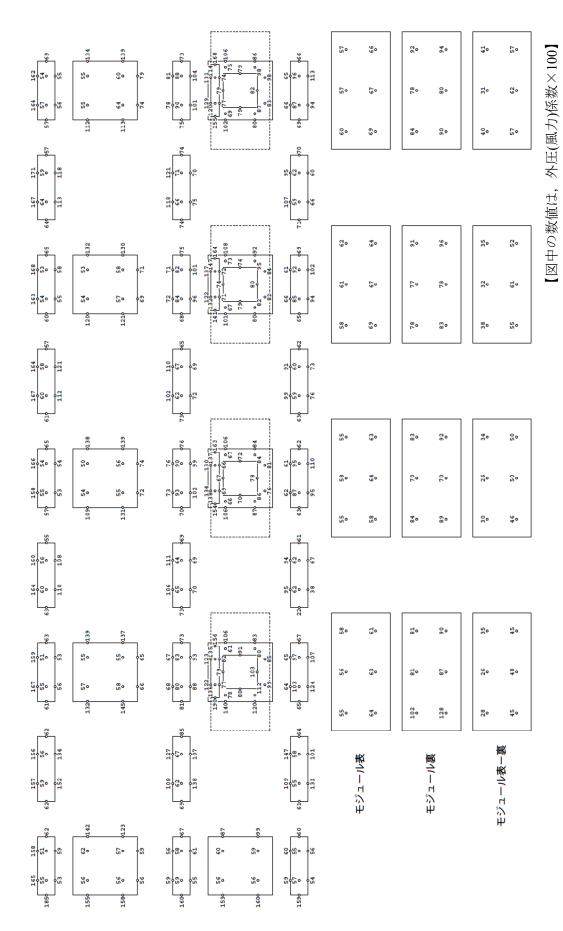
```
F_{x2} = q_{He}(-C_{p201}-C_{p203}-C_{p205}-C_{p207}-C_{p209}-C_{p211}+C_{p202}+C_{p204}+C_{p206}+C_{p208}+C_{p210}+C_{p212}) \cdot D_m \cdot B_m \cdot \sin\theta/6
= q_{He} \cdot (-C_{p601}-C_{p602}-C_{p603}-C_{p604}-C_{p605}-C_{p606}) \cdot A_3 \cdot \sin\theta
F_{y2} = 0.
F_{z2} = q_{He} \cdot (-C_{p201}-C_{p203}-C_{p205}-C_{p207}-C_{p209}-C_{p211}+C_{p202}+C_{p204}+C_{p06}+C_{p208}+C_{p210}+C_{p212}) \cdot D_m \cdot B_m \cdot \cos\theta/6
= q_{He} \cdot (-C_{p601}-C_{p602}-C_{p603}-C_{p604}-C_{p605}-C_{p606}) \cdot A_3 \cdot \cos\theta
M_{x2} = q_{He} \cdot (C_{p201}+C_{p207}-C_{p205}-C_{p211}-C_{p202}-C_{p208}+C_{p206}+C_{p212}) \cdot (D_m \cdot B_m/6) \cdot \cos\theta \cdot B_m/3
= q_{He} \cdot (C_{p601}+C_{p604}-C_{p603}-C_{p606}) \cdot A_3 \cdot \cos\theta \cdot B_m/3
M_{y2} = q_{He} \cdot (-C_{p201}-C_{p203}-C_{p205}+C_{p207}+C_{p209}+C_{p211}+C_{p202}+C_{p204}+C_{p204}+C_{p206}-C_{p208}-C_{p210}-C_{p212})
\times (D_m \cdot B_m/6) \cdot \cos\theta \cdot (D_m \cdot \cos\theta/4)
+q_{He} \cdot (-C_{p201}-C_{p203}-C_{p205}+C_{p202}+C_{p204}+C_{p206}) \cdot (D_m \cdot B_m/6) \cdot \sin\theta \cdot (3D_m \cdot \sin\theta/4+H_f)
+q_{He} \cdot (-C_{p207}-C_{p209}-C_{p211}+C_{p208}+C_{p210}+C_{p212}) \cdot (D_m \cdot B_m/6) \cdot \sin\theta \cdot (D_m \cdot \sin\theta/4+H_f)
=q_{He} \cdot (-C_{p601}-C_{p602}-C_{p603}+C_{p606}+C_{p605}+C_{p606}) \cdot A_3 \cdot \cos\theta \cdot (D_m \cdot \cos\theta/4)
+q_{He} \cdot (-C_{p601}-C_{p602}-C_{p603}) \cdot A_3 \cdot \sin\theta \cdot (3D_m \cdot \sin\theta/4+H_f)
+q_{He} \cdot (-C_{p601}-C_{p602}-C_{p603}) \cdot A_3 \cdot \sin\theta \cdot (D_m \cdot \sin\theta/4+H_f)
+q_{He} \cdot (-C_{p601}-C_{p602}-C_{p603}) \cdot A_3 \cdot \sin\theta \cdot (D_m \cdot \sin\theta/4+H_f)
```

モジュールの見つけ面積 $A_{\rm m}=B_{\rm m}\times D_{\rm m}$ フロートのはみ出し部分の面積 $A_{\rm f}=B_{\rm f}\times (D_{\rm f}\!\!\cdot\! D_{\rm m}\cdot\cos\theta)$ x 方向代表面積 $A_{\rm x}=A_{\rm m}\cdot\sin\theta+B_{\rm f}\cdot H_{\rm f}$ y 方向代表面積 $A_{\rm z}=D_{\rm f}\cdot H_{\rm f}$ z 方向代表面積 $A_{\rm z}=A_{\rm m}\cdot\cos\theta+A_{\rm f}$

$$C_{\text{Fx}}=(F_{\text{x1}}+F_{\text{x2}})/(q_{He}\cdot A_{\text{x}})$$

$$C_{\text{Fy}} = (F_{\text{y1}} + F_{\text{y2}})/(q_{He} \cdot A_{\text{y}})$$

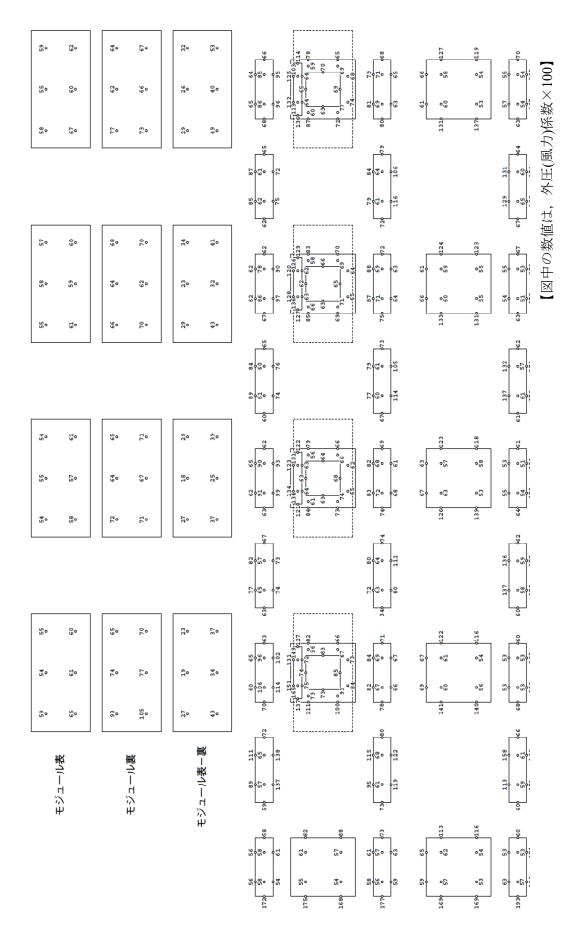
$$C_{Fz} = (F_{z1} + F_{z2})/(q_{He} \cdot A_z)$$

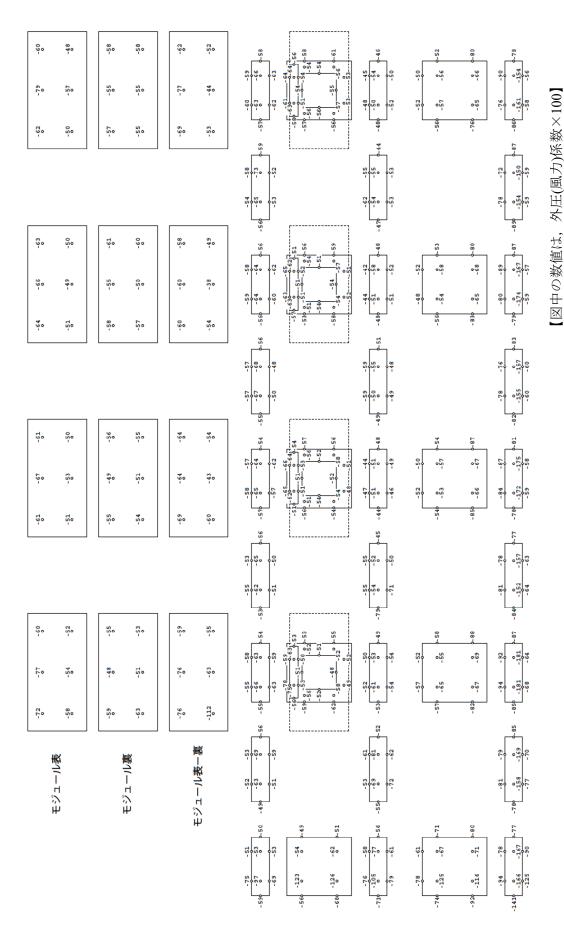

$$C_{\rm Mx} = (M_{\rm x1} + M_{\rm x2})/(q_{\rm He} \cdot A_{\rm z} \cdot B_{\rm f})$$

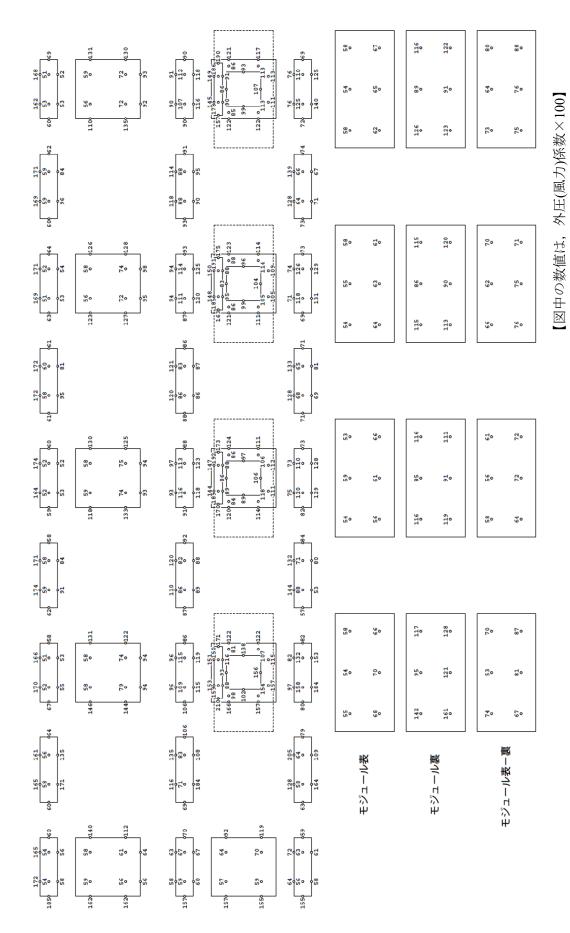
$$C_{\text{My}} = (M_{\text{yl}} + M_{\text{y2}})/(q_{\text{He}} \cdot A_{\text{z}} \cdot D_{\text{f}})$$

6. 実験結果

6.1 測定点における外圧係数

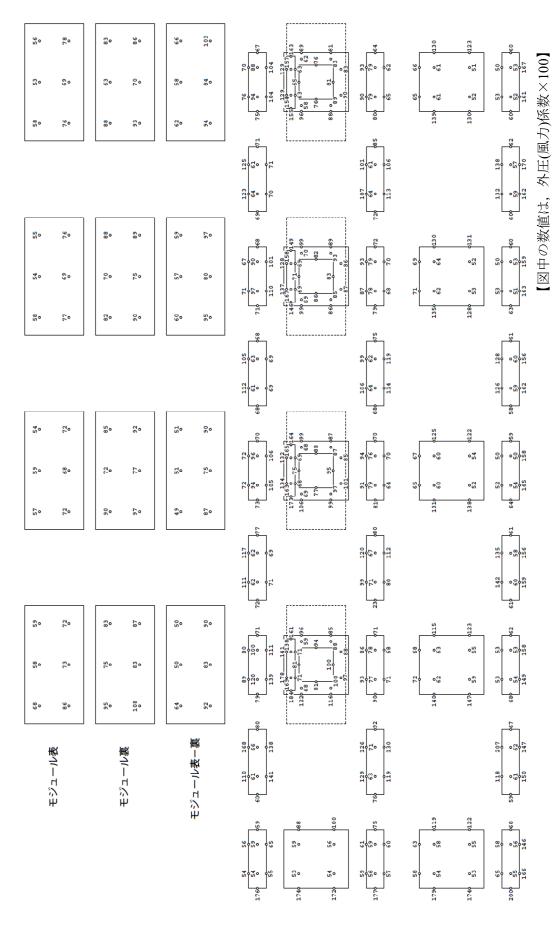

実験で得られた各測定点における全風向中最大および最小のピーク外圧係数分布の一例を図 6-1~図 6-3 に示す。図 6-1(1)、図 6-1(2)には傾斜角度 5 度のモジュール風圧模型を 1 列目(最北列)に配置したケースの最大ピーク外圧係数と最小ピーク外圧係数を、図 6-1(3)と図 6-1(4)には傾斜角度 5 度のモジュール風圧模型を 7 列目(最南列)に配置したケースの最大ピーク外圧係数を示す。同様に、図 6-2(1)と図 6-2(2)には傾斜角度 10 度のモジュール風圧模型を 1 列目(最北列)に配置したケースの最大ピーク外圧係数と最小ピーク外圧係数と最小ピーク外圧係数と最小ピーク外圧係数と最小ピーク外圧係数を、図 6-2(3)と図 6-2(4)には傾斜角度 10 度のモジュール風圧模型を 7 列目(最南列)に配置したケースの最大ピーク外圧係数と最小ピーク外圧係数を、図 6-3(1)と図 6-3(2)には傾斜角度 20 度のモジュール風圧模型を 1 列目(最北列)に配置したケースの最大ピーク外圧係数と最小ピーク外圧係数と最小ピーク外圧係数と最小ピーク外圧係数と最小ピーク外圧係数と最小ピーク外圧係数と最小ピーク外圧係数と最小ピーク外圧係数と最小ピーク外圧係数を示す。


, モジュール配置列:1列目) 全風向中最大のピーク外圧(風力)係数(傾斜角度5° 図 6-1(1)

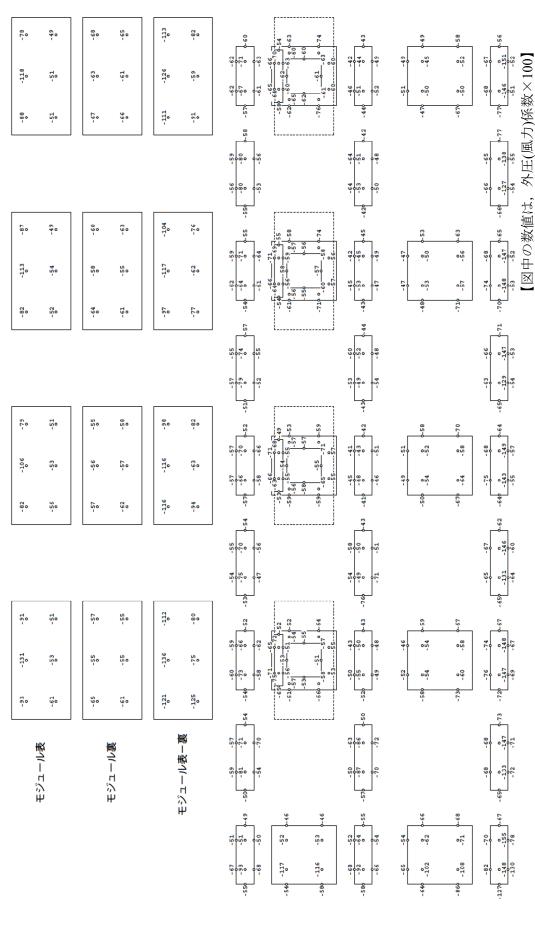

モジュール配置列:1列目) 全風向中最小のピーク外圧(風力)係数(傾斜角度5。 図 6-1(2)

,モジュール配置列:7列目) 図 6-1(3) 全風向中最大のピーク外圧(風力)係数(傾斜角度5。

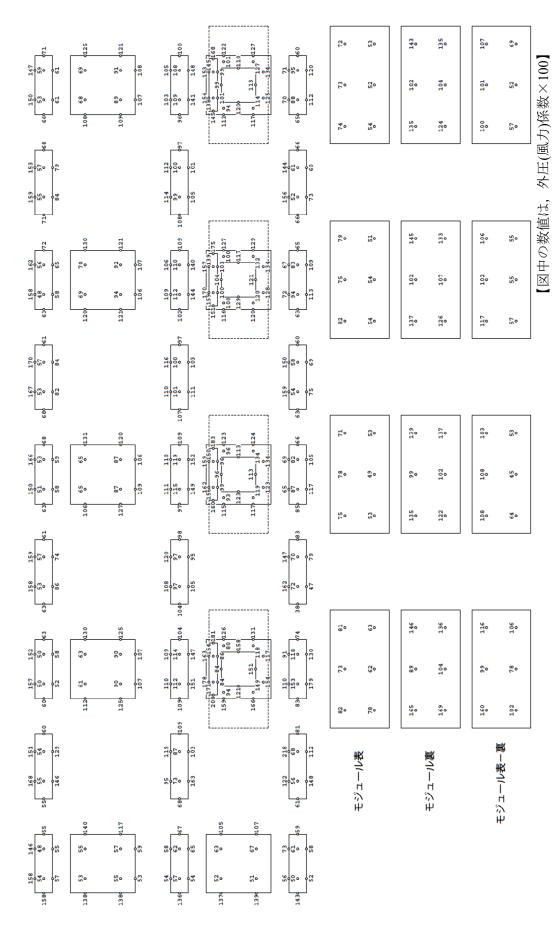
, モジュール配置列:7列目) 全風向中最小のピーク外圧(風力)係数(傾斜角度5° 図 6-1(4)

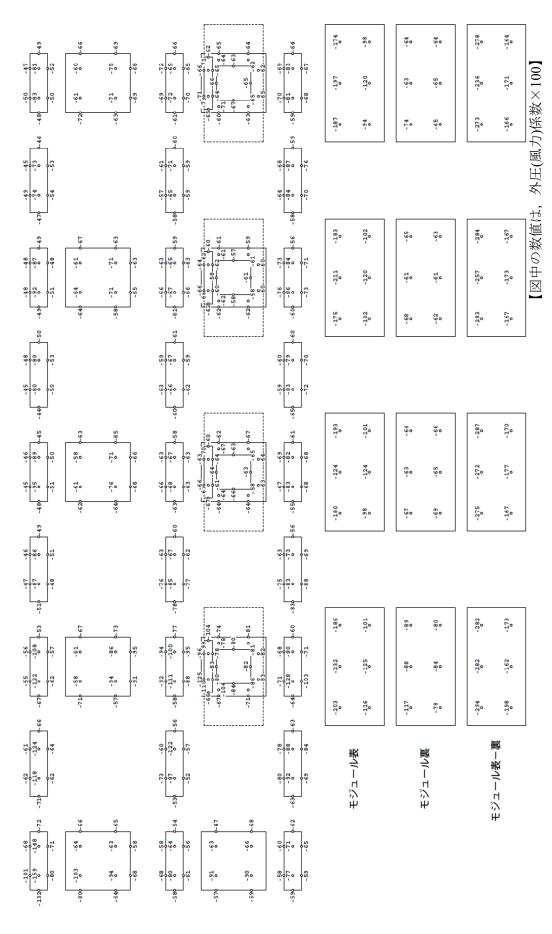


, モジュール配置列:1列目) 全風向中最大のピーク外圧(風力)係数(傾斜角度10。 図 6-2(1)


-47 -50 -118 -115 -46 -50 -52		8-1-0 50-1 00-01-0 50-1 00-01-0 50-1	-64 -63 -52 -52 -53 -52	-114		9,0	0 9°	-182	-102
-53	3	-58 -58 -58	-53 -56	-111	9 150	.63	Ф Фе	-174	-105
-50 -47 -125 -126 -58 -55	-610 -63 -64	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-57 -56 -59 -59	-109 -131	05.	9-	09- 09-	-178	06-
-47 -52 -121 -113 -57 -62 -58	·	S. O.	-59 -62 -58 -61 -50 -50	-1	νο.	φo	φο .	-169	φ, o
-51 -158 -59 -59 -55	-59	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	-54 -57 -57 -56 -56	-109	-53	-63	-61	-173	-100
-58 -53	-62 -65 -64	25-5-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	-54	-117 -136	-53 -60	-58 -57	69-	-168	-101 -90
							wo l	0.0	
-58 -53 -50 -58 -56 -56		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	60 -58 -52	17	'		6.9°	-176	,
56 - 53 - 53 - 53 - 53 - 54 - 55 - 55 - 55	20 05 05 05 05 05 05 05 05 05 05 05 05 05	20 CC SS	-61 -75 -52 -58 -52 -52 -52	-117	55.	4.0	φ° •	-191	-111
-66 -63 -53 -57 -56 -107 -56 -56 -56 -56 -56 -56 -56 -56 -56 -56	-68 -63	24	-55 -53 -64 -61 -756 -56 -56 -52 -52 -52 -52 -52 -52 -52 -52 -52 -52	-157 -117	у. 	-61	© ₩° 0 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	-199 -191	-91 -111
-74 -72 -66 -63 -59 -59 -59 -59 -59 -59 -59 -59 -59 -59	-63	25 - 56 - 62 - 68 - 68 - 68 - 68 - 68 - 68 - 6	-47 -48 -85 -53 -64 -61 .75 -60 -58 -52 -52 -67 -67 -68 -48	-11.7	500	1-0 4-	80 9°	-1,66 -1,99 -1,91	-167 -91 -111
-72 -66 -63 -57 -56 -18 -17 -72 -56 -56 -56 -56 -56 -56 -56 -72 -72 -56 -56 -56 -56 -72 -72 -72 -72 -72 -72 -72 -72 -72 -72	-68 -63	-56 - 67 - 68 - 68 - 68 - 68 - 68 - 68 - 6	480 -65 -53 -67 -61 -750 -66 -58 -52 -52 -67 -67 -68 -68 -68 -68 -68 -68 -68 -68 -68 -68	-116 -157 -117	у. 	-70 -61	© ₩° 0 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	-1,66 -1,99 -1,91	-91 -111

全風向中最小のピーク外圧(風力)係数(傾斜角度10°, モジュール配置列:1列目) 図 6-2(2)


【図中の数値は,外圧(風力)係数×100】


全風向中最大のピーク外圧(風力)係数(傾斜角度 10°,モジュール配置列:7列目) 図 6-2(3)

全風向中最小のピーク外圧(風力)係数(傾斜角度10°,モジュール配置列:7列目) **⊠** 6−2 (4)

モジュール配置列:1列目) 図 6-3(1) 全風向中最大のピーク外圧(風力)係数(傾斜角度 20。

, モジュール配置列:1列目) 全風向中最小のピーク外圧(風力)係数(傾斜角度 20。 図 6-3(2)

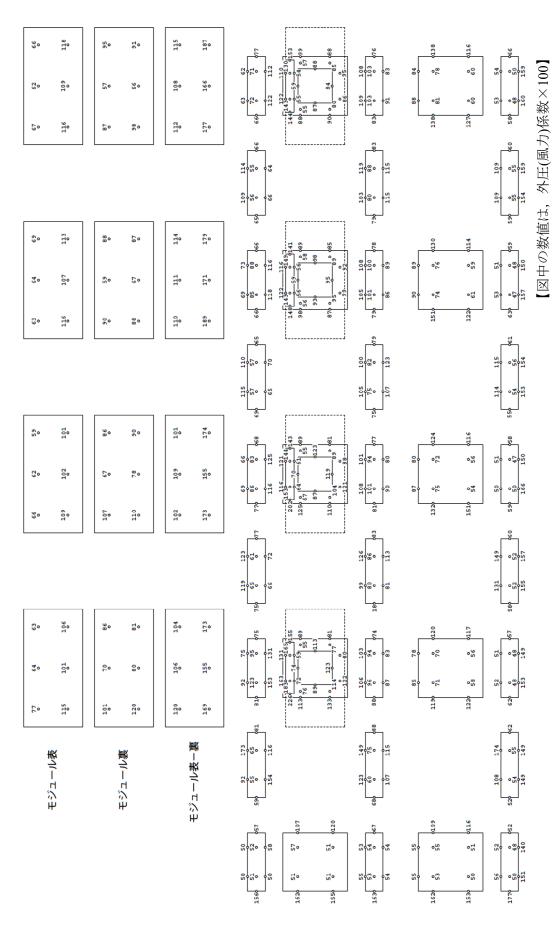
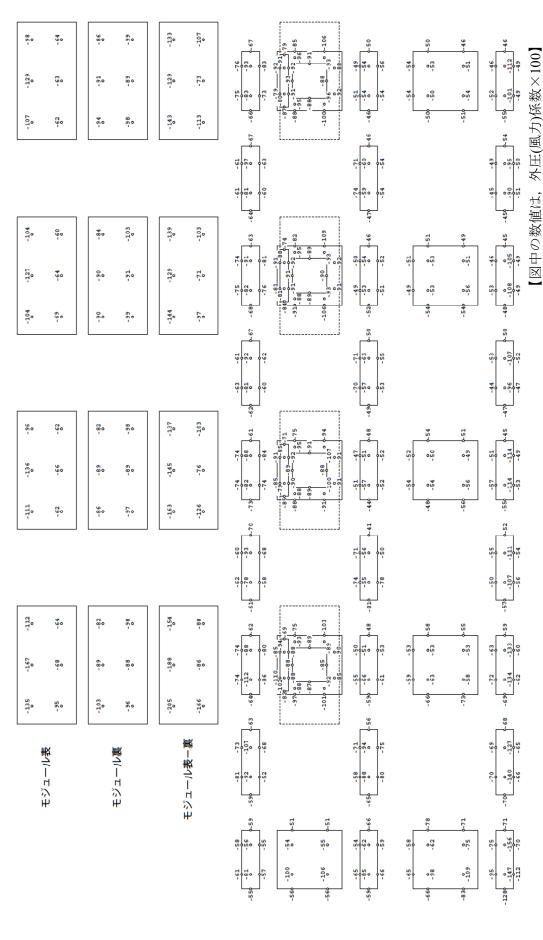



図 6-3(3) 全風向中最大のピーク外圧(風力)係数(傾斜角度 20゜,モジュール配置列:7 列目)

モジュール配置列:7列目) 図 6-3(4) 全風向中最小のピーク外圧(風力)係数(傾斜角度 20。

6.2 モジュールの風力係数

モジュールのみの名称は図 2-1 に示す $M1\sim M7$ (穴あきフロート+モジュール) の最後に $\lceil m \rfloor$ を追加して区別する。表 6-1、表 6-2、表 6-3 にモジュールの傾斜角度 5 度、10 度、20 度の場合の平均風力係数とピーク風力係数を示す。なお、力の向きはモジュール面を下に押す側を正とする。

表 6-1 全風向中最大・最小のモジュールの風力係数 (傾斜角度 5 度)

モシ゛ュール		平均風	力係数			ピーク	風力係数	
てジ ユール	最大値	発生風向	最小値	発生風向	最大値	発生風向	最小値	発生風向
M1-1m	0.070	210	-0.208	45	0.515	165	-0.833	30
M1-2m	0.090	165	-0.211	345	0.522	165	-0.750	330
M1-3m	0.114	165	-0.240	345	0.589	180	-0.884	345
M1-4m	0.123	195	-0.253	345	0.601	180	-0.934	345
M2-1m	0.071	210	-0.163	60	0.480	180	-0.673	75
M2-2m	0.085	150	-0.128	0	0.467	195	-0.566	345
M2-3m	0.110	165	-0.130	345	0.506	165	-0.623	345
M2-4m	0.124	165	-0.149	0	0.564	180	-0.607	345
M3-1m	0.061	210	-0.163	60	0.412	180	-0.684	75
M3-2m	0.079	180	-0.126	15	0.469	180	-0.578	15
M3-3m	0.097	195	-0.114	0	0.521	195	-0.553	345
M3-4m	0.109	180	-0.140	330	0.623	180	-0.624	345
M5-1m	0.059	195	-0.178	60	0.450	180	-0.766	75
M5-2m	0.087	180	-0.124	345	0.452	180	-0.568	15
M5-3m	0.101	165	-0.124	345	0.513	165	-0.613	0
M5-4m	0.125	165	-0.150	0	0.583	150	-0.652	0
M7-1m	0.036	195	-0.185	60	0.393	180	-0.774	60
M7-2m	0.040	150	-0.144	30	0.343	195	-0.591	15
M7-3m	0.058	150	-0.131	15	0.392	150	-0.588	0
M7-4m	0.080	165	-0.157	0	0.464	165	-0.679	0

表 6-2 全風向中最大・最小のモジュールの風力係数 (傾斜角度 10度)

モシ゛ュール	平均風力	係数			ピーク風力係数					
+y 1-/v	最大値	発生風向	最小値	発生風向	最大値	発生風向	最小値	発生風向		
M1-1m	0.195	165	-0.407	0	0.793	150	-1.405	60		
M1-2m	0.157	165	-0.431	0	0.723	165	-1.443	0		
M1-3m	0.151	150	-0.429	0	0.783	195	-1.514	15		
M1-4m	0.175	180	-0.438	0	0.805	225	-1.503	0		
M2-1m	0.153	165	-0.201	30	0.707	150	-0.869	0		
M2-2m	0.123	165	-0.207	45	0.656	195	-0.949	60		
M2-3m	0.125	165	-0.188	0	0.699	180	-0.812	345		
M2-4m	0.146	165	-0.191	0	0.821	180	-0.803	0		
M3-1m	0.135	165	-0.215	45	0.681	180	-0.889	60		
M3-2m	0.119	165	-0.201	30	0.665	180	-0.930	30		
M3-3m	0.119	180	-0.175	0	0.688	195	-0.805	0		
M3-4m	0.135	180	-0.182	0	0.741	135	-0.838	0		
M5-1m	0.126	165	-0.234	45	0.689	225	-0.872	60		
M5-2m	0.104	195	-0.190	30	0.645	165	-0.856	45		
M5-3m	0.113	180	-0.169	30	0.662	195	-0.772	330		
M5-4m	0.127	180	-0.171	0	0.652	195	-0.830	330		
M7-1m	0.182	180	-0.274	45	0.879	165	-1.002	30		
M7-2m	0.191	180	-0.237	15	0.802	180	-0.937	15		
M7-3m	0.191	180	-0.222	0	0.857	180	-0.913	0		
M7-4m	0.223	180	-0.208	0	0.914	180	-0.976	15		

表 6-3 全風向中最大・最小のモジュールの風力係数 (傾斜角度 20 度)

72.0° d.		平均風	力係数			ピーク原	虱力係数	
モシ゛ュール	最大値	発生風向	最小値	発生風向	最大値	発生風向	最小値	発生風向
M1-1m	0.330	150	-0.646	15	1.252	150	-2.045	30
M1-2m	0.173	165	-0.674	345	0.795	210	-2.122	15
M1-3m	0.152	180	-0.688	345	0.864	225	-2.227	345
M1-4m	0.146	150	-0.683	345	0.806	225	-2.117	0
M2-1m	0.252	150	-0.254	45	0.971	150	-1.096	45
M2-2m	0.120	165	-0.237	45	0.711	165	-1.150	45
M2-3m	0.116	180	-0.192	330	0.812	150	-1.050	45
M2-4m	0.125	180	-0.189	330	0.743	150	-1.034	315
M3-1m	0.230	150	-0.264	60	0.881	165	-1.223	15
M3-2m	0.097	180	-0.234	30	0.762	210	-1.092	345
M3-3m	0.103	180	-0.177	15	0.774	165	-1.193	330
M3-4m	0.098	180	-0.168	345	0.660	240	-1.143	30
M5-1m	0.215	150	-0.309	45	0.818	150	-1.265	60
M5-2m	0.058	135	-0.229	30	0.586	180	-1.103	15
M5-3m	0.064	180	-0.188	30	0.608	225	-1.110	345
M5-4m	0.045	180	-0.168	345	0.551	225	-1.075	345
M7-1m	0.459	180	-0.407	45	1.528	180	-1.484	15
M7-2m	0.455	180	-0.281	30	1.558	180	-1.338	15
M7-3m	0.488	180	-0.254	30	1.652	165	-1.209	15
M7-4m	0.485	180	-0.221	0	1.671	180	-1.267	30

6.3 モジュールの風力係数、モーメント係数(モジュールの傾斜角度を基準)

方向の定義は図 5-4 に示す通りである。モジュールの風力係数は表 6-1、表 6-2、表 6-3 に示した値と正負が逆となるだけであるため、本節では、モーメント係数についてのみ示す。表 6-4、表 6-5 には、傾斜角度が 5 度のモジュールにおける全風向中最大・最小の x 方向モーメント係数、y 方向モーメント係数、表 6-6、表 6-7 には、傾斜角度が 10 度のモジュールにおける全風向中最大・最小の x 方向モーメント係数、y 方向モーメント係数、表 6-8、表 6-9 には、傾斜角度が 20 度のモジュールにおける全風向中最大・最小の x 方向モーメント係数、y 方向モーメント係数を示す。

表 6-4 全風向中最大・最小の x 方向モーメント係数 (傾斜角度 5 度)

	10 4			-07 X 71 HJ C				
モシ゛ュール	X	方向平均モ	ーメントイ	系数 	X	方向ピーク	モーメント	係数
CV 1 //	最大値	発生風向	最小値	発生風向	最大値	発生風向	最小値	発生風向
M1-1m	0.024	330	-0.028	60	0.123	345	-0.130	75
M1-2m	0.016	315	-0.016	45	0.104	330	-0.090	30
M1-3m	0.016	315	-0.015	30	0.107	315	-0.092	15
M1-4m	0.018	315	-0.015	30	0.106	345	-0.106	30
M2-1m	0.018	315	-0.026	75	0.095	345	-0.124	105
M2-2m	0.013	315	-0.016	45	0.082	315	-0.088	30
M2-3m	0.011	330	-0.011	45	0.089	345	-0.089	30
M2-4m	0.012	315	-0.012	30	0.086	315	-0.093	30
M3-1m	0.019	330	-0.026	75	0.096	300	-0.126	75
M3-2m	0.010	330	-0.016	45	0.083 315		-0.089	15
M3-3m	0.011	330	-0.011	45	0.075	300	-0.071	45
M3-4m	0.010	330	-0.010	45	0.079	330	-0.072	30
M5-1m	0.016	315	-0.027	75	0.093	315	-0.130	60
M5-2m	0.008	315	-0.011	45	0.079	300	-0.080	45
M5-3m	0.009	315	-0.014	45	0.085	345	-0.078	30
M5-4m	0.011	315	-0.013	45	0.084	330	-0.091	45
M7-1m	0.014	330	-0.030	75	0.088	300	-0.138	60
M7-2m	0.010	330	-0.014	45	0.078	315	-0.086	30
M7-3m	0.013	315	-0.013	45	0.080	315	-0.075	30
M7-4m	0.011	330	-0.010	30	0.078	300	-0.087	60

表 6-5 全風向中最大・最小の y 方向モーメント係数 (傾斜角度 5 度)

T). 2	у	方向平均モ	ーメントイ	系数	y .	方向ピークモ	モーメント	、係数
モジ゛ュール	最大値	発生風向	最小値	発生風向	最大値	発生風向	最小値	発生風向
M1-1m	0.017	0	-0.003	90	0.087	0	-0.047	105
M1-2m	0.017	345	0.001	90	0.088	345	-0.039	255
M1-3m	0.022	345	-0.001	270	0.100	345	-0.049	240
M1-4m	0.022	345	-0.002	90	0.107	0	-0.046	240
M2-1m	0.010	345	-0.003	75	0.059	30	-0.045	105
M2-2m	0.014	15	-0.001	270	0.063	345	-0.039	210
M2-3m	0.013	345	0.000	270	0.070	345	-0.039	135
M2-4m	0.016	345	0.000	90	0.075	345	-0.035	255
M3-1m	0.013	15	-0.002	90	0.058	15	-0.041	75
M3-2m	0.011	345	-0.001	105	0.059	15	-0.038	210
M3-3m	0.012	345	-0.001	270	0.057	345	-0.039	255
M3-4m	0.012	0	-0.004	90	0.067	345	-0.040	255
M5-1m	0.010	0	-0.002	90	0.059	30	-0.049	105
M5-2m	0.013	345	0.000	90	0.059	30	-0.036	135
M5-3m	0.011	15	-0.001	270	0.060	0	-0.037	255
M5-4m	0.012	345	0.000	285	0.066	0	-0.040	105
M7-1m	0.008	0	-0.003	90	0.054	15	-0.049	60
M7-2m	0.009	345	-0.002	105	0.049	0	-0.039	120
M7-3m	0.011	0	-0.001	255	0.053	0	-0.036	90
M7-4m	0.012	15	-0.002	270	0.065	15	-0.038	90

表 6-6 全風向中最大・最小の x 方向モーメント係数 (傾斜角度 10 度)

モシ゛ュール	X	方向平均モ	ーメントイ	系数	x :	方向ピークモ	モーメント	、係数
Ty 1-1/	最大値	発生風向	最小値	発生風向	最大値	発生風向	最小値	発生風向
M1-1m	0.032	330	-0.032	45	0.177	345	-0.190	30
M1-2m	0.015	330	-0.021	45	0.134	330	-0.142	30
M1-3m	0.019	330	-0.015	30	0.132	330	-0.132	15
M1-4m	0.013	315	-0.015	45	0.147	0	-0.156	15
M2-1m	0.023	330	-0.027	75	0.134	315	-0.132	90
M2-2m	0.013	330	-0.026	45	0.120	300	-0.173	60
M2-3m	0.015	330	-0.014	45	0.122	345	-0.110	30
M2-4m	0.017	330	-0.016	30	0.121	315	-0.114	30
M3-1m	0.016	315	-0.028	75	0.120	315	-0.127	60
M3-2m	0.008	315	-0.025	30	0.102	330	-0.128	30
M3-3m	0.013	315	-0.014	45	0.104	315	-0.116	60
M3-4m	0.010	315	-0.009	45	0.096	315	-0.100	60
M5-1m	0.017	330	-0.029	75	0.137	315	-0.131	90
M5-2m	0.009	315	-0.017	45	0.109	315	-0.128	45
M5-3m	0.007	315	-0.015	30	0.112	315	-0.111	30
M5-4m	0.011	315	-0.011	45	0.110	300	-0.103	15
M7-1m	0.016	330	-0.030	75	0.132	300	-0.156	75
M7-2m	0.012	315	-0.024	45	0.121	300	-0.132	45
M7-3m	0.012	315	-0.013	45	0.113	300	-0.110	45
M7-4m	0.013	315	-0.015	30	0.112	315	-0.133	30

表 6-7 全風向中最大・最小の y 方向モーメント係数 (傾斜角度 10 度)

モシ゛ュール	у	方向平均モ	ーメント(系数	у	方向ピーク	モーメント係数		
TV 1-N	最大値	発生風向	最小値	発生風向	最大値	発生風向	最小値	発生風向	
M1-1m	0.038	0	-0.005	90	0.191	0	-0.055	180	
M1-2m	0.035	0	0.000	165	0.184	0	-0.047	180	
M1-3m	0.038	0	-0.001	180	0.193	0	-0.058	210	
M1-4m	0.037	0	-0.002	180	0.189	0	-0.055	180	
M2-1m	0.028	30	-0.004	90	0.133	30	-0.057	195	
M2-2m	0.018	345	-0.001	90	0.127	345	-0.053	165	
M2-3m	0.022	15	-0.005	180	0.119	330	-0.058	195	
M2-4m	0.017	0	-0.002	180	0.108	345	-0.055	195	
M3-1m	0.027	15	-0.004	90	0.130	15	-0.059	195	
M3-2m	0.019	0	-0.001	150	0.113	345	-0.049	180	
M3-3m	0.020	0	-0.003	180	0.119	345	-0.054	180	
M3-4m	0.018	0	-0.006	180	0.115	0	-0.061	180	
M5-1m	0.025	15	-0.007	90	0.123	45	-0.057	180	
M5-2m	0.018	30	-0.005	195	0.107	345	-0.056	195	
M5-3m	0.018	0	-0.007	180	0.107	0	-0.062	180	
M5-4m	0.018	345	-0.006	180	0.109	345	-0.064	180	
M7-1m	0.024	15	-0.003	90	0.126	0	-0.054	90	
M7-2m	0.017	0	0.000	90	0.111	0	-0.038	135	
M7-3m	0.017	0	0.002	270	0.106	0	-0.038	240	
M7-4m	0.019	0	0.000	270	0.121	0	-0.033	255	

表 6-8 全風向中最大・最小の x 方向モーメント係数 (傾斜角度 20 度)

モシ゛ュール	X	方向平均モ	ーメントイ	系数	x :	方向ピークモ	モーメント	、係数
Ty 1-1/	最大値	発生風向	最小値	発生風向	最大値	発生風向	最小値	発生風向
M1-1m	0.047	345	-0.040	45	0.277	345	-0.211	45
M1-2m	0.023	315	-0.026	45	0.235	345	-0.221	15
M1-3m	0.022	345	-0.022	15	0.225	330	-0.201	30
M1-4m	0.020	345	-0.022	15	0.237	345	-0.227	15
M2-1m	0.023	330	-0.031	75	0.168	330	-0.199	15
M2-2m	0.014	330	-0.033	45	0.141	315	-0.214	45
M2-3m	0.015	330	-0.016	30	0.137	315	-0.151	45
M2-4m	0.018	330	-0.014	30	0.139	315	-0.146	30
M3-1m	0.016	165	-0.033	75	0.158	330	-0.203	0
M3-2m	0.009	315	-0.030	30	0.146	0	-0.177	30
M3-3m	0.008	315	-0.016	45	0.148	315	-0.152	60
M3-4m	0.012	300	-0.011	45	0.142	345	-0.137	45
M5-1m	0.020	165	-0.034	75	0.155	0	-0.182	15
M5-2m	0.010	315	-0.020	45	0.138	330	-0.174	45
M5-3m	0.010	315	-0.018	30	0.149	300	-0.145	30
M5-4m	0.011	315	-0.015	45	0.148	315	-0.160	15
M7-1m	0.016	315	-0.040	60	0.154	15	-0.195	45
M7-2m	0.014	315	-0.027	45	0.152	315	-0.183	45
M7-3m	0.014	330	-0.017	45	0.155	300	-0.151	0
M7-4m	0.013	330	-0.017	30	0.143	0	-0.158	45

表 6-9 全風向中最大・最小の y 方向モーメント係数 (傾斜角度 20 度)

72.0° d.	у	方向平均モ	ーメントイ	系数	y	方向ピークモ	モーメント	·係数
モシ゛ュール	最大値	発生風向	最小値	発生風向	最大値	発生風向	最小値	発生風向
M1-1m	0.037	45	-0.016	210	0.196	30	-0.154	180
M1-2m	0.027	330	-0.022	150	0.165	330	-0.142	180
M1-3m	0.028	345	-0.018	195	0.177	330	-0.168	195
M1-4m	0.027	345	-0.020	195	0.171	330	-0.150	165
M2-1m	0.032	30	-0.016	210	0.168	30	-0.148	195
M2-2m	0.014	30	-0.025	150	0.132	345	-0.148	195
M2-3m	0.009	30	-0.018	195	0.147	15	-0.167	180
M2-4m	0.011	330	-0.020	165	0.140	345	-0.154	165
M3-1m	0.029	15	-0.015	195	0.206	15	-0.143	180
M3-2m	0.012	30	-0.027	150	0.153	0	-0.157	180
M3-3m	0.013	0	-0.020	195	0.152	345	-0.157	195
M3-4m	0.012	0	-0.019	195	0.172	0	-0.150	180
M5-1m	0.027	15	-0.016	210	0.179	15	-0.132	180
M5-2m	0.015	15	-0.023	150	0.141	330	-0.138	195
M5-3m	0.013	345	-0.021	195	0.141	330	-0.132	195
M5-4m	0.010	0	-0.023	165	0.140	0	-0.135	165
M7-1m	0.031	15	-0.004	90	0.194	15	-0.055	120
M7-2m	0.029	180	-0.001	270	0.157	15	-0.041	345
M7-3m	0.033	180	-0.001	90	0.151	0	-0.045	0
M7-4m	0.028	180	0.000	270	0.152	0	-0.051	15

6.4 風力係数、モーメント係数 (水面を基準)

図 2-1 に示す Sa、Sb、Sc の各フロートおよび、穴あきフロート+モジュールの M における風力係数とモーメント係数(水面を基準)を 5.3.4 項に従い算出する。本節では、重複して測定されている Sa0-1~Sa0-5、Sb0-1~Sb0-4、Sc0-1~Sa0-5 については 1 列目測定ケースの結果、Sa2-1~Sa2-5、Sb2-1~Sb2-4 は 2 列目測定ケースの結果、Sa3-1~Sa3-5、Sb3-1~Sb3-4 は 3 列目測定ケースの結果を用いてアイランド全体の結果を合成することとした。図 6-4(1)、図 6-4(2)、図 6-4(3)、図 6-4(4)、図 6-4(5)、にアイランド全体の C_{FX} 、 C_{Fy} 、 C_{Fz} 、 C_{MX} 、 C_{My} 結果表示フォーマットを示す。図中の数値は計算点番号を示しており、 C_{FX} は A-1~A-125、 C_{Fy} は A-201~A-325、 C_{Fz} は A-401~A-525、 C_{MX} は A-601~A-725、 C_{My} は A-801~A-925 とした。なお、図 3-3 と図 3-4 に示す測定点番号およびモジュールの風力係数計算点番号と本節における計算点番号を区別するため、計算点番号の頭に「A-」をつけて表示している。

図 6-5、図 6-6、図 6-7、図 6-8、図 6-9 には、 C_{Fx} 、 C_{Fy} 、 C_{Fz} 、 C_{Mx} 、 C_{My} の全風向中最大最小の分布図を示す。それぞれ(1)は傾斜角度 5 度の最大値、(2)は傾斜角度 5 度の最小値、(3)は傾斜角度 10 度の最大値、(4)は傾斜角度 10 度の最小値、(5)は傾斜角度 20 度の最大値、(6)は傾斜角度 20 度の最小値である。

=**A**-33= =**A**-61= =A-84= =**y**-83= =A-47= =**A**-70= =A-107= -**A**-19-A-79 A-102 A-116 -a-j17--a-j22--a-j18--a-j23--a-j19--a-j24--a-j20--a-j25--a-j21 A-28 A-42 A-56 -**A**-5-A-14 -**a**-106---------------=A-37= -A-23-=<u>4-</u>97= -6-**∀**-=**A**-32= -A-18 =A-46 =**y**-60= =8-69 =**A**-92= —A-4— =a-87==a-83= A-115 A-27 A-41 A-55 A-78 A-101 A-13 -a-103--a-108--a-104--a-109--a-105--a-110-—**y**-80= =**A**-31==**A**-36= -**A**-22-_A-8− -A-17-=8-59 =89-W= =A-82 =A-91 A-114 A-100 -**y**-3-A-,12 A-26 A-40 A-54 A-77 =**a**-<u>81</u>==a-86= =**a**-30==**a**-35= **-8**-63 =A-72= =<u>8-</u>95= -A-21-—A-7— =¥-44= -¥-67 -**A**-16 =A-58 -A-2 =06°-¥= A-113 A-25 A-39 **A**-,76 8-°9 A-11 A-53 -**A**-62= —a-,⊓== –, 94= —A--A-20--A-29 -99-V--88-W--A-15--A-43 -A-57— —**A**-80— A-112 A-10 A-24 A-38 A-52 A-75 A-98

図 6-4(1) Gx 用結果表示フォーマット

図 6-4(2) G,用結果表示フォーマット

=¥-693= -a-717—a-722—a-718—a-723—a-719—a-724—a-720—a-725—a-721— -¥-633= -a-662-a-658-a-663-a-659-a-664-a-660-a-665-a-661= -A-601---A-606---A-602---A-607---A-603---A-608----A-604---A-609---A-605-A-614 -A-616-A-621-A-617-A-622-A-618-A-623-A-619 -a-643--a-648--a-644--a-649--a-649--a-645 =**V**-670= -a-680--a-685--a-681--a-686--a-682--a-687--a-683--a-688--a-684-A-716 A-628 A-642 A-656 A-679 A-702 -a-629--a-634--a-630--a-635--a-631--a-636--a-632--a-637--A-669==A-674= -A-692-A-697 A-715 A-613 A-655 A-627 A-641 A-678 A-701 ₩-696<u>%</u>-=**A**-<mark>673</mark>= =**A**-667=-A-672=-A-668= =**A**-690=**A**-695=**A**-691= .a-708==a-704==a-709==a-705= A-612 A-626 A-714 A-640 A-700 A-654 A-677 A-611 A-625 ¥-699 A-713 A-639 A-653 A-676 -A-689-A-694--A-615-A-620-A-666-A-671= -A-703 -¥-657 A-610 A-638 A-652 A-675 A-712 A-624 A-698

図 6-4 (4) Gx 用結果表示フォーマット

-a-885=a-881=a-886=a-882=a-887=a-883=a-888=a-888 =¥-833= -a-917-a-922-a-918-a-923-a-919-a-924-a-920-a-925 =**A**-892==**A**-897==**A**-893= -a-801-ra-806-ra-802-ra-807-ra-803-ra-808-ra-804-ra-809-ra-805 A-814 -A-819-A-828 A-842 -a-843--a-848-a-844-a-849-a-845-a-845 A-856 -a-862-a-858-a-863-a-859-a-864-a-860-a-865-a-861 =**A**-869=**A**-874=**A**-870= A-879 A-902 =**A**-906-A-911-A-906-A-916 -A-818-A-823--A-832-A-837-A-915 A-813 A-855 A-841 A-878 A-901 A-827 -a-834-a-830-a-835-a-831-a-836 -a-871-a-867-a-872-a-868-a-873 -a-903--a-908--a-904--a-909--a-905--a-910--A-816-A-821-A-817-A-822-A-914 A-812 A-840 A-826 A-854 A-900 A-877 A-913 A-853 A-811 A-825 A-839 A-876 A-899 -A-820--**A**-829 -¥-857 -¥-880 -888-W--A-815 -998-W-A-810 A-838 A-852 A-875 A-898 A-912 A-824

図 6-4(5) 💪 用結果表示フォーマット

=48 = 104 -262-123 118 =**2**3= 4-6° 96° 800 <mark>6</mark>° **9** -5₆9--115--176-=23 =23 102 =<u>23</u>= ||09| 102 -53-9₈ 88° 102 2° 87 -244--104--198--248 =_63= =5,5= =28 =28 -<mark>51</mark>-100 =9°= 103 103 81 97 109 8<mark>7</mark>° —25º -103--196--273 =51= 112 -67-8° 6° 9<mark>1</mark>0 91 132 8 8 8 -53-_129= -121= -248--201--129= -147-—101— -34 -258--30--41--0° -34 -83 69° <mark>و</mark> و <mark>23</mark> <mark>28</mark>° 61 8°

図 6-5(1) 全風向中最大の×方向風力係数(傾斜角度 5°)

-808-=-9£ <u>--1,7-</u> =-85 =-82 =-79 =-79 -256--<u>6</u>2-||88-|-=-38 =---54--114 09--55 -54 -78 -50 -52 --1⁶9--265-87--274 —<u>9</u>9--=-57= --84 --=-81= **=68-**= =-73= =68-= -126 - 59 -53 -50 -51 -70 -55 —-165— -258--74---91 -281 ___08-_ || 88 || -118 --62--58 -51 -47 -49 -59 -61 --153 -264--74---50---274 =-82 =-85 =-81 =-81 **--92** -63-<u>_68</u>-_ -124 -49 -58 -45 -51 -65 -53 --21₂----158 --271 --171----265--31 -33 --39 08--71 69--62 -65 -64 -71

図 6-5(2) 全風向中最小の×方向風力係数(傾斜角度 5°)

【図中の数値は,

図 6-5(3) 全風向中最大の×方向風力係数(傾斜角度 10°)

П						П		Ι			П	Т	Т	T	Т		
															1		
															4		
													+		+		
													+		+		+
Н		+											$\frac{1}{1}$		+		+
228	86	44	160	°,	127	-4°	114	4.7	200	86	44	47	۰	119		9 <mark>6</mark>	, 63
234		88-		200		, 11,		55	66		- 58 - 83		٥	 	•		-179-
235	100		162	ǰ	127	2.4°	108	42	-4 ₉	102	8.0	38	٥	123	۰	102	58
—2 <u>1</u> 8—		9 ₈						8.5			 		۰		•		127
248	103	5,	158	î°	120	,°	66	40	48	106	4.2	42	۰	126	۰	ϡ	63
233—				707							°		0		•		2 ₁ 1
238	95 95	41	161	ř°	141	96	120	99	40	116	S o	42	۰	141	۰	109	-70
247		—123—		000		184			 		 	182	۰		°		228
-245	0°9	-37	59	Ç.	5° °	35	9° °	32	31	51	3,5	31	۰	56		73	-87

図 6-5(4) 全風向中最小の×方向風力係数(傾斜角度 10°)

П				П		Т						Т						100]
																		風力係数×100】
																		【図中の数値は,
																		N H
H								1	\exists]						
																	+	
						1											\perp	
-46	-122	62	-20	114	-54	 83	-57			*/-	-49	89-	76	86-	-32	-67	231	
-123		50		-62		5°9		-58		*°			98-		-163		-239	
-48	-134	-63	- 59	86-	03-	- 19	-59	-72	-	60-	-47	-64	82	06-	-37	- 65	-246	
1,13		48		7,0		-64 -64			 :	7.		-54	98-		1,52		234	
47	27	71	<u></u>		[;,	.82	12.	1 .	-	Н	<u> </u>			[g,	-34	9.	247	
Н	-127			-101	-51	-	-51		-	500	4.	-1,8=	-62-	98-	H	99°	\dashv	
-120-		-09-		96-		=-\$1=		_ - 44-		*c-		-46	-84		-132		-224	
-47-	-133	-72-	-76		89°	=6 ² -=	-64] 6.			09°	85=	= <u>8</u> 3	- 93	-35=	9°-	-250-	
218		181		184				158 <u>=</u> 158=		- Te3			—- 183 <u>—</u>		1 <u>\$</u> 1=		232-	
98	-75	-34	99-	-37	8.00	-39	-62	-33	,,	55.	69-	-28	-32	-62	-29	69-	-238	

226 132 119 -31-121 129 155 -184--62 80 -179--157-. 63 _21g__ -30 -30 243 134 146 123 134 -54-103 <u>8</u> ° -162--184 -62 —<mark>19</mark>5— -35-128 =31 = 228 132 133 152 104 =27= 9<mark>4</mark>° -1,6--203--71--224-=48 * =5.1 -7,1-232 166 145 184 168 108 -35-110 =22= —23₁— -158 -<mark>4</mark>1 48 **6**2 9° 40° **61** 8° 7,1 è2 L°

図 6-5(5) 全風向中最大の×方向風力係数(傾斜角度 20。)

【図中の数値は,

--120= =-130= =-129= -105-=-1112= =-148= =-132= -151 -201--108 -74 -61 -59 -49 -90 --192--06---05° 196--- 129 - 148 --195 =- 100= =-121= =- 1,29= =-111= -1,55 -109 -76 -57 -49 -67 08° -191--- <u>93</u>--54 =-137= =-120= -204 --50---123= =-127= -142 -88 -121 -20 -63 -49 -57 98-=-109= --<u>91</u>--207--55 **--158** =-143= --103-=-131= =-101= =-145= =-128= -212--131 -116 -103 -95 -88 --150 -20 --213= --189 ----161----1₉₀---209---31 --211--33 -33 --38--79 -59 -20 -74 -72 69--67

【図中の数値は,風力係数×100】 全風向中最小の×方向風力係数(傾斜角度 20°)

(9) 9-9 区

8° :6<u>2</u> . 85° || || || || 66° __<u>\$9</u>_ 1,76 -251-—<mark>221</mark>— -224---2₆7--251-

図 6-6(1) 全風向中最大の y 方向風力係数(傾斜角度 5。)

図 6-6(2) 全風向中最小の y 方向風力係数(傾斜角度 5。)

-72	-1,73	-72	-126	-63	-112		-101	98		-65	-102		09	-91	- 63	-160	888
-64		71		-74		-62			_	-,75		-85	=-74		68-	·	-73
-19	-164	-83	-128	- 65	-112	-74	8600	-62		-63	-103		ę̂3	66.	-77	-160	-71
-11-		-81		0,0				<u>, , 1</u>		81		83	6 <u>L</u>		-86		-22
-18	-1,70	-92	-124	89-	-111	-20	-103	99-		-64	96-			-105	-22-	-164	-73-
-75		-9 ²		-11		_69		<u>6</u>		-75		- 113=	-82		-124		-74
_06	-1,6	-93		-73				-23=		-61				-105	-92	-173	-96
-74		88°		-72		-72=		- 1,8		- 79		=06- 	=8 ²		-83		-83
-1,59-	-189	-00-	-121	-001	-113	-102	-111	6	ţ	6	-110	_86	6	-1,14	-109-	-191	1,77-

57

-88 -87-. 82° -67° -78-66 ۾ ه -67--8°1-ဗုံ_ဇ . 87--64 -201--<mark>221</mark>--257--508--50°--215--<u>2</u>03-

図 6-6(3) 全風向中最大の y 方向風力係数(傾斜角度 10°)

【図中の数値は、

=-7.1= __89-_ _89--165 -142 =89-= =<u>6</u>9= -121 -124 -121 -155 -157 -84--<u>6</u>2-=-<u>8</u>3== =-85 =-71= -151 -143 -131 -149 -160 -147 -152 ±99°--1,60 -151 -130 -148 -157 -157 -151 ____<u>85</u>___ 104 -168 -172 -175 -164 -229 -180 -141 96. 69. -06--1,72 -126 -128 -114 -111 -118 -1,59

【図中の数値は, 風力係数×100】

全風向中最小の y 方向風力係数(傾斜角度10。

図 6-6(4)

59

224 225 181 197 201 -7.8 121 -9e-174 -09° —<mark>61</mark>— -<mark>9</mark>2 . 85° 206 226 213 192 135 207 169 =111= =100= 236 265 215 377 257 138 185 -62 8° ç.° =104= =104= =122= -102-316 243 221 250 242 156 _9° 142 -8₂-_64-—23₁— —1<u>9</u>7— -184-—1<u>8</u>1— -182--213-—<mark>188</mark>— 180 -169--198-172 163 151 169 161 201

【図中の数値は, 風力係数×100】

図 6-6(5) 全風向中最小のy方向風力係数(傾斜角度 20。

60

|| 86-| =-8₂= =06-= __66-_ || 88°--232 =-83 =--182 -1,90 =-75= -1,50 -66---208 -186 -161 --22--65-_________ ____8__ =-<mark>92</mark>== =-100= =-84= =-<u>9</u>7= __98-_ -86--243 -212 -195 -204 -196 -148 -154 --84 -99--64--108 __-94 ___ **—**-93 -1,55 -239 -224 -187 -199 -208 -150 -<u>6</u>9-=-94 --61--69 =-104== -- 103 =-106= =-105= =-105= __86-= -123--214 -230 -08--158 -324 -257 -209 -152 --101---- 105= -105 -<u>6</u>9--64 -84-+88°---143 -86---8<u>1</u> --83--—98---8²---172 -86----6⁻--142 -137 -1,66 -131 -181 -131

図 6-6(6) 全風向中最小の y 方向風力係数(傾斜角度 20°)

【図中の数値は,

-194--190 -=1,3= 8° 89° 4₅ 848 25° 63° 6<u>9</u>° <u>ي</u>و -202--1₉₉-—2<u>1</u>8— 800 65° 4₃ **4**9 47 °29 , 13° 182 -<u>200</u>--87° **-18**6-946 4₆ 45 8° 9°9 22° ²6 —195— -185-6. -210 -530-=82 =82 63 63 22° . 54 28 62 , 1,1 , 11 -190--5₁₀--519-6°° -94-102 -8,1 -9° 101 ۰ 8 9<mark>4</mark>° 8° 66° 94

【図中の数値は,風力係数×100】 全風向中最大の z 方向風力係数(傾斜角度 5°)

図 6-7(1)

62

=-1,12= =-121= -- 1₁14= =-125= =-122= =-120= --2°---- 123--56 -54 -45 -51 -51 99-89° --73 --81--74-=-131== =-118= =-124= =-115= __06-_ =-121= -1113-=-119= -41 -50 -49 -50 -51 -67 -67 -72 -85-=-1,34 ±-131 -- 128 --1119-=-121= =-119= =-93== =- 123= -48 -44 -44 -35 -47 99-89° -69--98 =-121= =-135= =-135= =-126= =-131= =-133= --114--64--46 -47 -41 -47 -39 69--20 -<mark>81</mark>--69---63--72 -71 89-89--72 -64 -64

【図中の数値は, 風力係数×100】

図 6-7(2) 全風向中最小の 2 方向風力係数(傾斜角度 5°)

159	20	87	113	ريًا	09°	08°	6°,	7,4		٥.	63		6,4	7,5	59	62	-179-
156		83—		7,7		7,5		08		۰	8	۰			99		182
159	89	-81	109		62	89	85.	69	74		60 -72	۰	81	72	80	99	180
		81		6 <u>^</u>		6 <u></u>		6 <u></u>		ţ.		•)°		-174
178	89°	81	601	1,7	64	1,7	64				61	۰		73	° °	70	188—
151—		6 <u>^</u>				69		89		è.	75				200		-171-
174	7,4	86	108	88	62	81	99	08		٥	62	•	9'4	82	69	8°	188—
201		112		66°		6		6 <u>^</u>		g.	83	•	87		00T		-174-
201	800	9 ⁶	8 °		8° °	74	2,6		7.5	2.	84	۰	58	98°	28	8°2	-189

図 6-7(3) 全風向中最大の z 方向風力係数(傾斜角度 10°)

--143 =-121= =-118= =-121= =-125= =-120= =-123= --62--67 -20 -63 -58 -72 =-95= -16 -67 __6<u>_</u>_ --101---89--_ --132== 1125 =-130= =-116= =-131= -149-=-115= 09--56 -63 -61 -71 -76 -67 -69---103--67-=-129= =-133= =-124 =-129= -- 132= -155= -120--99--09--58 -57 09--56 99--79 99--1,1--104-89. =-145= =-1,71= =-145= =-147= =-1,54 =-100= -149— -61 -65 -63 09--74 -79 -71 -74--94--<u>6</u>2---67-

全風向中最小の z 方向風力係数(傾斜角度 10° 図 6-7(4)

【図中の数値は,

-65

69-

-20

-64

-65

69-

-73

-67

|| || || =74= 163 102 -133--108-8° 9° 83 ę. 83 8° -9° -84 -4--136-168 || |83 || 8. 6° 82° 97 8° 64 1113 —<mark>130</mark>— 127 -146 163 101 800 84° 8 8 3 87 99 11,3 -137-=111= =101= =103= _<u>166</u>_ =100= -149--116-=109= 155 119 8° 9<mark>3</mark> 87 99 8<mark>4</mark> ° -164-—1<mark>6</mark>1— -125--174 -7,4 -82 8° 74 ° 83 , 28 7,5 <mark>2</mark>% <mark>6</mark>°

【図中の数値は, 風力係数×100】

全風向中最大の z 方向風力係数(傾斜角度 20。)

図 6-7(5)

66

図 6-7(6) 全風向中最小の z 方向風力係数(傾斜角度 20°)

																	\parallel
																	+
-20	e .	-146	-61	-115	-57	-116	-55	- 124	-126	-46	- T30		/ 17-	-133	•	-79	-67
-72		-122-		-85		68°		6			Н		# 0	-100	_		-63
-13-	-104	-149-		-125		- 119		-124	-139	 	971-		677-	-126	0	-79	-61-
-74-		-132		88-		- 94		200	-92		n 8		000		+		-63-
-13	-91	-154	-63	-133		- 118	-67	151-	-138		- 133		11-	-116	0	-73	-64-
-74-		-121		66-		00°		-707-	86- -				# 0 °		\perp		-6 ² -
-20-	-85	-147		-189	-2,7	-183		941-	-152		961-		CLT-	-116	+	-75	-69-
-80-		-9ê-		-19 -19		-83		6,-	-73=		200		r°.	<u> </u> 08-	+		-63-
-ů	99-	71	-67	91	99-	-64-	-64	0-	-71-	-64	9-	7	*	-63	۰	- 64	09-

67

=10 1,5 13 1,5 15 1<mark>4</mark> -<mark>14</mark> <u></u> 11. -15 =11= =1.4 -12-=10= 13 1° 1,4 1,6 1,4 -15--14--11₁-15° 14° 1.4 0 610 15° ٥٠ -<mark>13</mark>-=11= 23° 1,1 1,6 1,1 1,1 ۰ 🗴 -16--1₅-13° ÷. ه ۲

モーメント係数×100】 【図中の数値は, 図 6-8(1) 全風向中最大の×方向モーメント係数(傾斜角度 5°)

--16-=-111= =-11= --15--16 -16 -19 -17 -13 <u>,,</u> <u>٠</u>۰ _-<u>15</u>__ -13 -12--15 =-11 --15-=-10= -14 ٠° ا -16 -13 -14 -17 <u>, °</u> 9. --15 -15--01. -14 =-13 =-13 6. -17 -16 -16 -14 -15 9۰ --14--14-÷. --15---18--010--24 -23 -23 -24 -25 90 90 --14---15-11. --1,7 --16--16 -17 -17 -11 -19 -19 -17

【図中の数値は,モーメント係数×100】

図 6-8(2) 全風向中最小の×方向モーメント係数(傾斜角度 5°

=14= =15= 2° -13 27 **53** 1,7 200 1-4 -<mark>1</mark>6 -<mark>1</mark>0 -<mark>13</mark> -<mark>13</mark> =1,5 = -12-24° 25° 13 200 21 ٥. ٥٠ -11₁--<mark>13</mark> =15 =15= -15-200 -12 24 2₂ 13 25 -14-**~**° 90 -<mark>13</mark> =1,5= -13-320 24 2₁° 25 24 -<mark>13</mark> **~** ° ٥٠ -1,1-۰ و 90 ۰ و s o n° ۰ و 90

【図中の数値は,モーメント係数×100】 全風向中最大の x 方向モーメント係数(傾斜角度 10°)

逐 6-8(3)

図 6-8(4) 全風向中最小の×方向モーメント係数(傾斜角度 10°)

【図中の数値は,モーメント係数×100】

																	+
																	\parallel
																	+
-14	-7	-12-	-28	91.	-21	GŤ-	-18	-13		-12	-19		-13	-24		9.	-14
13		6-		71-		01-		01-		6-		٠.	-10		20		12
-14	-,2 °	-13	-24	/1-	-20	07-	-21	-14		-14	-20	10	-14	-20		9°	-14
-14		-10		51-		n°.		,		g-,		•	-10				-12
	-2	-12	-27		-31	***	-23	-14		-15	-23	ì	-13	-24	۰.	9.	-15
-13		6		71-		010		-11-				0	-10)°		-12
-18-	r, °	-12-		870				-15		-16-	-24	0	-16	-28	30	9.	-14
-14-		-111-		10		200	;	-14		-15	4	10	141.				-13
16-	-16	-14	-16	÷.	-17	;. 	-16		,	-13	-17	•	-15-	-17	10	-15	-14

71

図 6-8(5) 全風向中最大の×方向モーメント係数(傾斜角度 20°)

【図中の数値は,モーメント係数×100】

																\perp
																\perp
																$\frac{1}{1}$
1,3		-	45	1	25		2e			7			26	30		+
11. 11.	σ.	9-13	4,	=13==29=	[4,	=11==19=	2,			22	ı <mark>ıı —</mark> 1,7:	-ii		•	σ.	-1211
1,2	000	1,2	41		25	1,9	2,7			2,7		=1e===1				1,2
-111		80									11:	=11=		i e		-12
-1,1	000	_13	42°	27	26	=21=	° 26	1,7		25°		=1,6	2,7	۱۰	00 0	1,2
1,2		600		—11 —14.							1,2					1,5
1,1	٥°		\$1	27	30	2,1	° °]80]18	2,2	1,7		28	20	000	13
1,2		-1,4										<u>1,3</u>		70		-1,4
1,3	2		۲۰	9.0	10	œ.	0 10	10	111	800	10		۲۰ ۰	١٠	2	1,4

72

【凶⊤ン数値は, こうく 図 6−8 (6) 全風向中最小の×方向モーメント係数(傾斜角度 20。)

-12-	φ°.	-111	-41	-24=	-26	-1,7=	-24	-15] -1e	-28	-11.	-17=	-29	-12	ő، •	-12-
-10-		6-		-14=		-13=		_;;•				-10=		-11.		-111
-13-	r-,	-11-	-36	-25=	-28	-20	- 28 8	-11-	1,0	-26	18=	-11	-27	-12	۰°	-14-
-12		8.		-13		-13		<u>F</u> .	-15		-11-	-12=		-10		-12
-14-	9.	-11-	-40	-24=	-39	-18=	-32	-16	16	-31	-16-	-17=	-33	-12	٥, ۰	-13
-12		8		-14=		-112=		_ 			-11-	-11=		-10=		-13
-15-	9.	-11-	-38	-20=	-34	-20=	-34	-18	-1,7	-33	18	-19=	-35	-13=	800	-15-
-12-		-10-		=61		-1,6=			18 		-18	-18=		-20=		-12-
-16-	-14	-111-	-14	-14-	-15	-13-	-15	-12-	-12-	-15	-12-	-13-	-16	-14-	-15	-15-

【図中の数値は,モーメント係数×100】

【図中の数値は,モーメント係数×100】 図 6-9(1) 全風向中最大の y 方向モーメント係数(傾斜角度 5°)

																	\perp
																	\perp
																	\perp
																	+
																	+
433	7°	9	100	9 2	°		٥٠						9.		, l	90	2 - 2
3,5 34	ø,	714-	0.0	-12:- 	90	10=	rv •] .	-2-		101		600			90	722-
30 30	0.0	13		12		=10==7:							11 7) 		25
-3,1	000	9,	2	-2	9.	-7	r.] %	8°	9.		 _ _ _ 			ı	ru.	**
-3,1		-13-		=15 =15					-10		= <u>i</u> 0==		10		1,2		-24
-3,4		-2	∞ ∘	, ,	r. o	-2-	ω°		80		0			r.	90	φ۰	800
								15									25
3,2	٥٠	9°	2°	4.0	۲.	4.0	۲۰	50	40	۲.	9°		4 °	r	٥٠	7.	1,3

74

【図中の数値は,モーメント係数×100】 全風向中最小のy方向モーメント係数(傾斜角度5°) 図 6-9(2)

																T			
																1			
																+			
																+			
																+			
7	۵,	8.	-4-	-12	۳. :	-11-	m	01-		-10	4.0	01-	-100	,	4 5-	•	r.,	-32	
21		-11		-11-				01-		8.		200		\parallel		•		-33	
	8 0°	8.		-10	e.		E	700		-10	E	0	-11-	,	7-	•	-2	-34	
-21		6-		6- 6-		ر. ا		, °		8-		,°-		, [[•		-32	
-,7	۵,	8.		-11-	۳.	ر. ا	4.	-		-11-	۳. E	ii	11.	,	4.	•	-2.	-32	
-19-		6.		_01		800) -		e e		\parallel		+		-33	
9.	8,0	8		-12		-11-		7.		-11-		-11-	-11	-#	4.0	+	8,0	-34	
11		-21				-18		, ° -				-0°	-21=	+		+		334	
-11	æ°.	-4-	- <u>-</u> 7		r-,	-0	9.		'	, 	8-	 	-4-	1	-4-	٥		-33	

75

|| || || 21 11 1, 110 13 -2° 110 900 120 210 1,1 110 -23° 1. -27° —<mark>31</mark>— 200 12 11° 1. 1. **00** ° 90 -<mark>29</mark>--26-010 _30_ 12 13 21 14 13 **~** ° **00** 0 -31 -31 -58-__31__ -111-**~** ° oو ه ي ٥œ **о**

全風向中最大の y 方向モーメント係数(傾斜角度 10°)

图 6-9(3)

モーメント係数×100】

【図中の数値は,

【図中の数値は,モーメント係数×100】

図 6-9(4) 全風向中最小の y 方向モーメント係数(傾斜角度 10°)

9-	-13	8.		-14	9,	01-	-7	6.	e- -	-7-		, •	£. 4	'e	r-,	-29-
-15-		9-		Ш		°		-,7	-1		000	٥	7			-30-
9	-12	8.		-12	r	01-	9.	6°-	- 10	9,	8.	Н	4.0		<u></u>	-31
-14-		9-		Ш		80		-	9-		\- -			1		-29-
9-	-12	6-		Н	9.	OT-		Ĺ	-10	9.	-10	30	4.0	+	- L	-31-
-15-		-9°-				°		= 2°			9.	Н		1		-28
_9°	-11	6-	II	-13		Н		-11	-10		01-	10	E. 4	+	- L	-31-
-27-		-23-		-23	<u></u> ;	-77		-20	-20		-73	 \mathbb{H}	101	0		-29-
-111-	9.	-4-	9. 1	٠ 	۹۰ ۱	۱۰	9.	 	- - - -	9.	- -		9. 4	۰	r-2	-30-

77

35 13 23 22 26 -23 **00** 0 -22-2° 21 220 2₅ ϡ **... 00** 0 200 -23° 3,6 22 21 23 25° -24-000 000 -2²-31 32 37 27 27 -28° <u>0</u> ه -14--2₉ -2<u>7</u> -11₁--3°2-<mark>∞</mark>•

【図中の数値は,モーメント係数×100】 全風向中最大のり方向モーメント係数(傾斜角度 20°)

図 6-9(2)

78

【図中の数値は,モーメント係数×100】 図 6-9(6) 全風向中最小の y 方向モーメント係数(傾斜角度 20°)

]		_		
										4		
										_		\perp
										1		\perp
										+		
1-5-	-14	-13	-20	-14	3	11 -15	-17:	-16	97-		۹۰	425-
-111-	е.	5—-e-	п	3=-6=	 8	Ĺ	=#°	16 6	, °	+		424
22	-13	-12-	-21	-13	12	1-15	0-16	┡	#T-		r-°	424
5 - 12-	14	1-7-	6	12 - 7	171	-1611		8°		_		524
11	L-°	-,11-	-19		Н	8-	-915=	-,815-	97-	20	- <u>-</u> 7	2625-
	-13	13	Lt.	13	00-14-		+		Н		-7	-262
24	1	241	-21	2,1	-2720	2718	.23==-16=	2418	01-		-18	262
10	6.	4.	φ,	4.0		-2-	-5-	-2-			-2	-36

79

6.5 JIS C 8955 との比較

実験結果の速報として、全風向中最大・最小のピーク風力係数を図 6-10 に示す。最も西に配置されるモジュールを A とし、中央に近くなるにつれ、B、C、D としている。モジュール D は東西方向の中央モジュールである。点線は JIS C 8955: 2017 に示されている地上設置型のモジュールの風力係数にガスト影響係数として 2.2 を乗じたものである。本実験で得られたモジュールのピーク風力係数の方が JIS 値よりも絶対値で小さい結果となった。

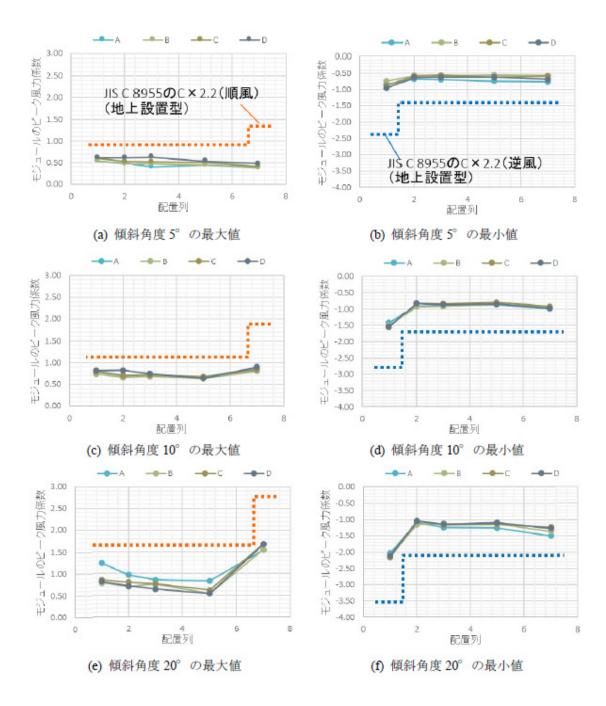


図 6-10 全風向中最大・最小のモジュールの風力係数

7. フロートの設計用風力係数について

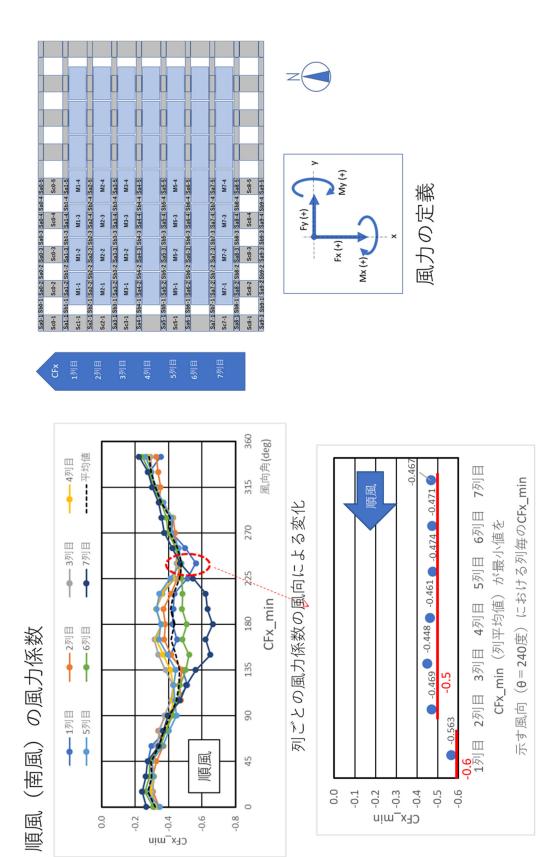
6.4 節に示したフロートの風力係数をもとに、設計用風力係数について検討する。アイランドを構成した水上設置型太陽光発電設備は、アイランドの外周部で係留されることが多いことから、アイランド全体に作用する風荷重を設定する必要がある。また、風上側のフロートが強風によって捲れ上がる被害が発生していることから、風上側1列目のフロートに作用する捲れる方向へのモーメント風力や浮上がる方向への風力(揚力)を設定し、捲れ等の防止について検討することも重要である。ここでは、これらの風荷重を対象とした設計用風力係数を与えることとする。

7.1 アイランド全体の設計用風力係数

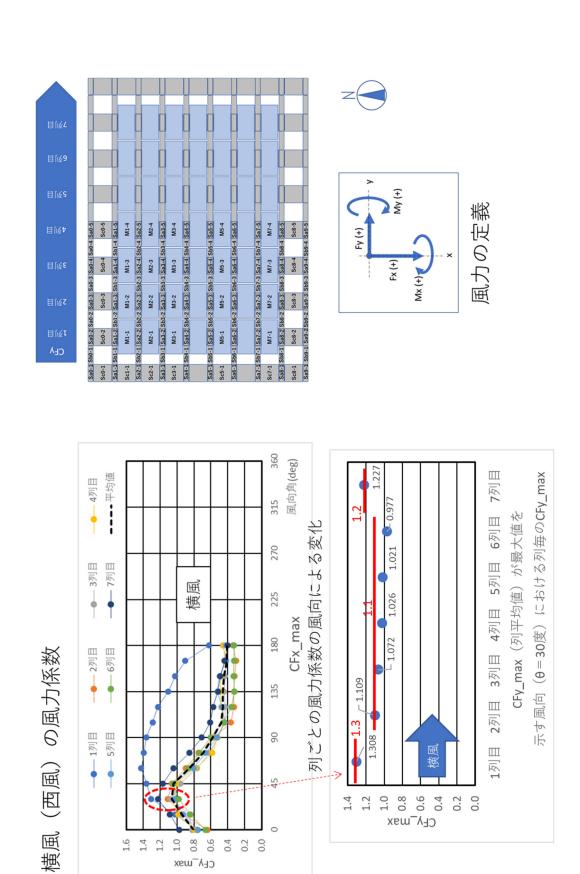
アイランドを構成する各フロートの風圧荷重は、アイランド内の位置(風上側からの列数など)によって風圧荷重が変化する。一般的には風上側 1 列目の風圧荷重が最も大きくなり、後列では風圧荷重が小さくなるため、その傾向を把握したうえで、アイランド全体の風圧荷重を設定する必要がある。そこで、アイランド全体を対象とした設計用風力係数は、次の方針で設定することとした。

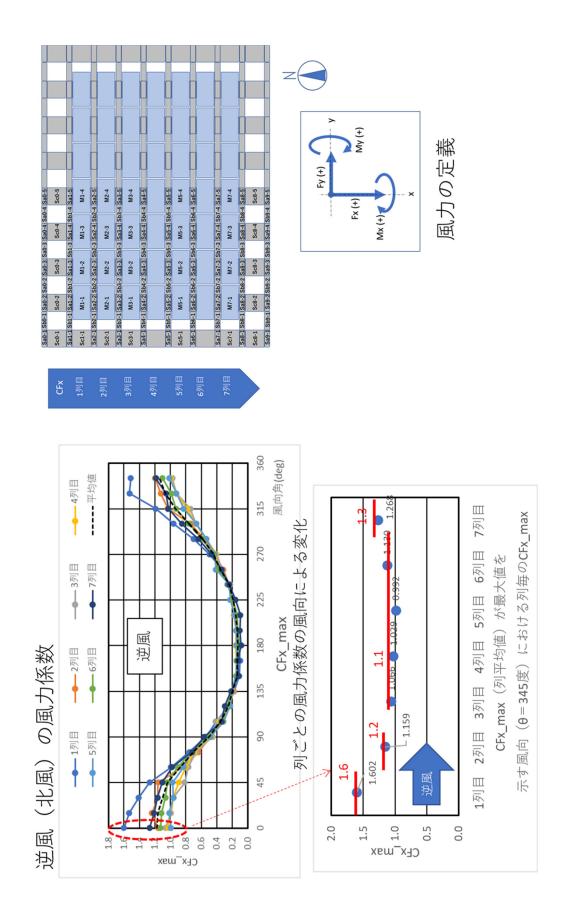

- ① 設計風荷重の対象は主として風上側の係留索およびフロート間接合部とし、アイランド内のフロートの列ごとの荷重を与えることによってアイランド全体の荷重分布を設定できることとする。
- ② メインフロートの設計用風力係数は、フロートとモジュールが一体の状態での風力係数で与える。
- ③ 設計荷重はアイランド内の風方向への荷重分布として与えるため、設計用風力係数には風上側から1列目、2列目、3列目以降、最後列の各フロートの抗力係数を設定する。
- ④ 設計用風力係数は、順風(南風)、逆風(北風)、横風(西風または東風)について 設定する。
- ⑤ 列ごとの風力係数は、同じ列のフロートのピーク風力係数の平均値とし、全ての列の 風力係数を合算してアイランド全体の風力係数を求める。ただし、ピーク値の同時性 はない。
- ⑥ アイランド全体の風力係数が最大値および最小値(負側の絶対値の最大値)を示す風 向を抽出し、その風向時における列ごと風力係数を設計用風力係数とする。
- ⑦ 横風の設計用風力係数の設定においては、フロートおよびアイランドの形状の軸対 称性を利用して、西側半分のフロートの風圧測定結果を東側半分に折り返して適用 し検討する。
- ⑧ 設計用風力係数は、JIS C 8955:2017でのアレイ面の風力係数と同様にピーク風力係数をガスト影響係数(風洞実験での流入風の設定条件である地表面粗度区分 Π の値: G_{f} =2.2)で除した等価風力係数で与える。

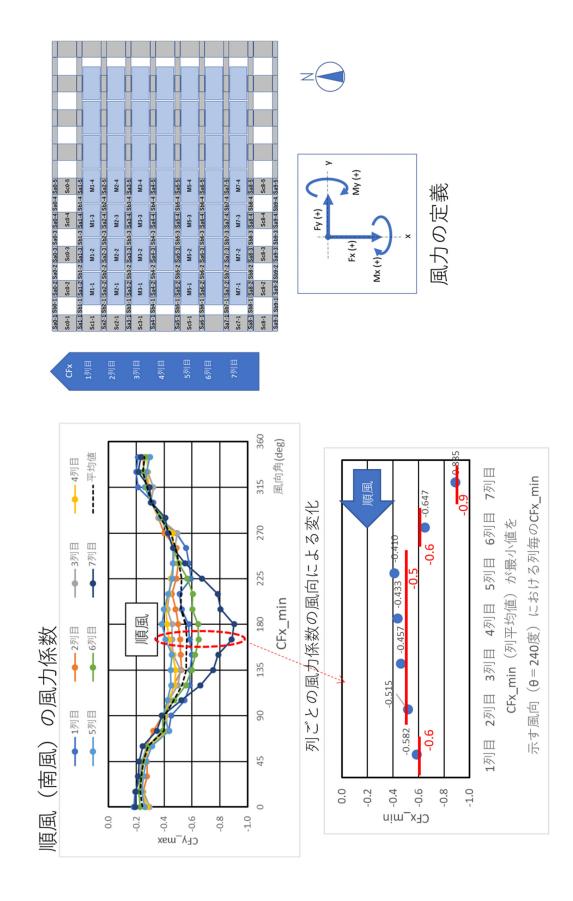
アイランド設計風荷重を対象としたメインフロートの設計用風力係数の検討結果を図 7-1(1)~図 7-3(3)および表 7-1(1)~表 7-1(3)に示す。なお、これらの風力係数はピーク風力係数であるため、JIS C 8955:2017 と同様の等価風力係数(=ピーク風力係数/ガスト影響係数)に換算し、その結果を表 7-2(1)~表 7-2(3)に示した。このとき、同 JIS での表現に合わせて荷重の向きを特定したうえで風力係数(抗力係数 $C_{\rm D}$)は絶対値で表している。


サブフロート Sa および Sb の設計用風力係数についても同様の検討を行った。それらの結果を図 7-4(1)~図 7-6(3)および表 7-3(1)~表 7-4(3)に示す。

サブフロート Sc については、逆風、順風、横風の際に必ずしもそれらの風向方向の風力 (抗力)が大きくならないため、ここでは下記に示す逆風、順風、横風の風向範囲を限定し、それらの風向範囲のなかでで風力係数の最も大きくなる風力係数を示した。また、サブフロート Sc については、アイランドの外周のみに配置されているので、風上側1列目と最後列に注目してまとめている。それらの結果を図7-7(1)~図7-7(3)および表7-5(1)~表7-6(3)


・逆風:風向角 315 度~45 度・順風:風向角 135 度~225 度・横風:風向角 45 度~135 度

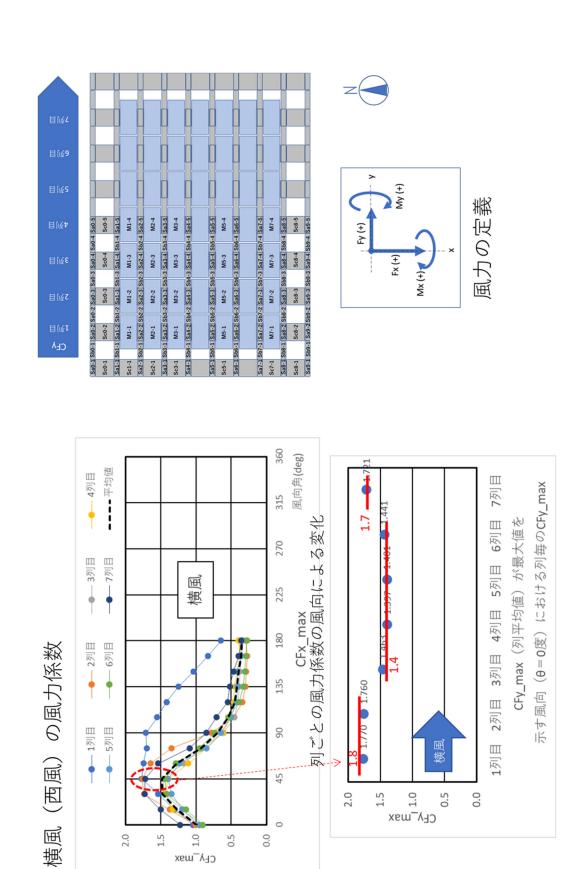
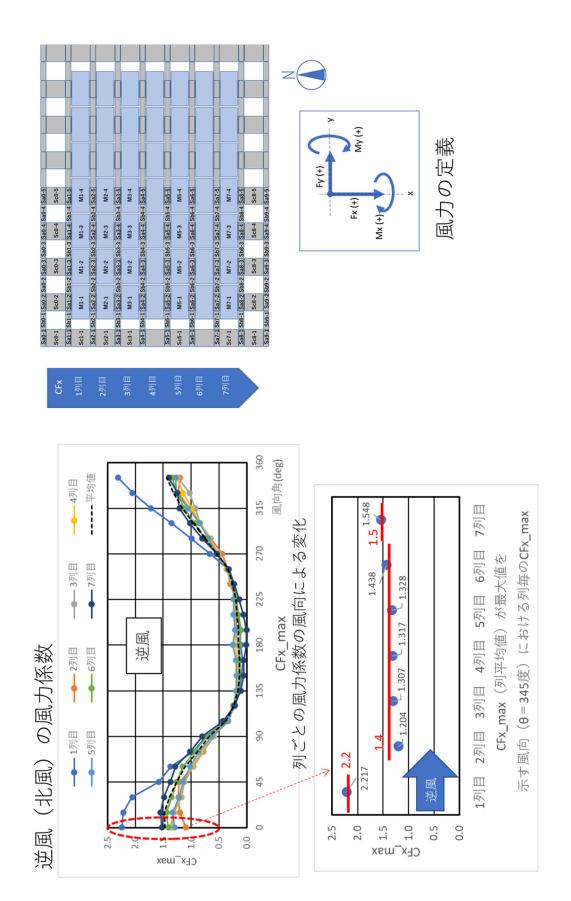
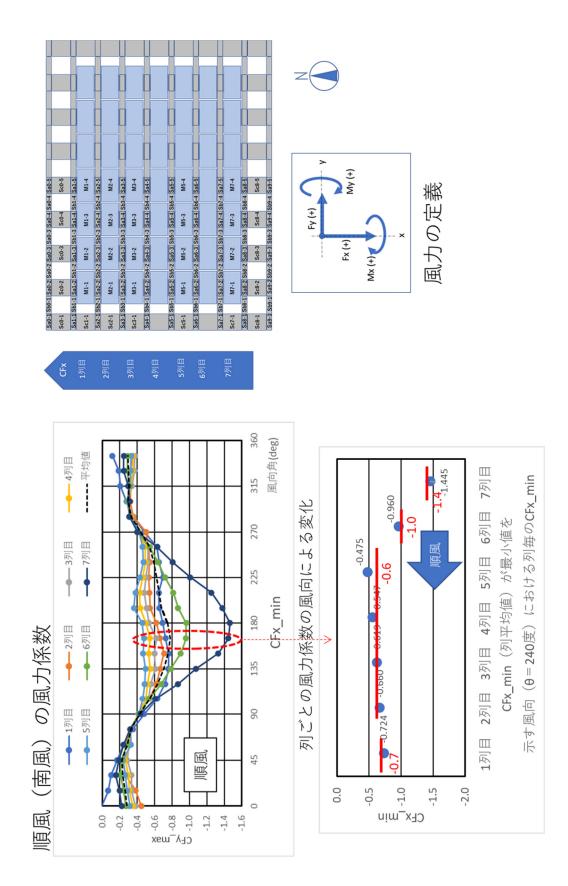

(風) 図 7-1 (1) アイランド設計用のメインフロート設計用風力係数検討結果(モジュール傾斜角度 5°

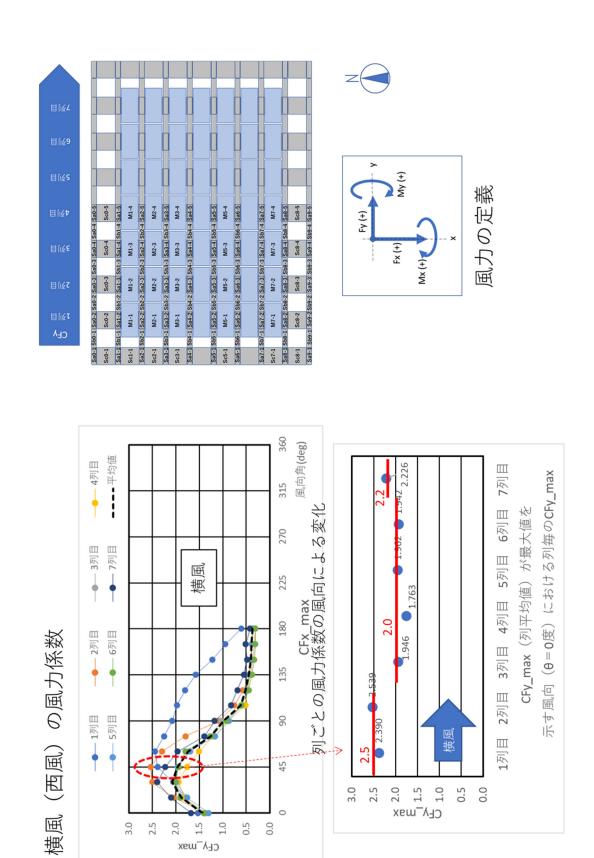

順風) 図 7-1(2) アイランド設計用のメインフロート設計用風力係数検討結果(モジュール傾斜角度 5。

, 横風) アイランド設計用のメインフロート設計用風力係数検討結果(モジュール傾斜角度 5。 ☑ 7-1 (3)

, 逆風) 図 7-2(1) アイランド設計用のメインフロート設計用風力係数検討結果(モジュール傾斜角度 1 0°

, 順風) 図 7-2(2) アイランド設計用のメインフロート設計用風力係数検討結果(モジュール傾斜角度10°


図 7-2(3) アイランド設計用のメインフロート設計用風力係数検討結果(モジュール傾斜角度10。,横風)

(風) 図 7-3(1) アイランド設計用のメインフロート設計用風力係数検討結果(モジュール傾斜角度 2 0°

, 順風) 図 7-3(2) アイランド設計用のメインフロート設計用風力係数検討結果(モジュール傾斜角度 2 0°

, 横風) アイランド設計用のメインフロート設計用風力係数検討結果(モジュール傾斜角度20° **⊠** 7–3 (3)

表 7-1(1) アイランド設計用ピーク風力係数 *G*_{x, max} の提案値 (メインフロート、逆風(北風))

モジュール 傾斜角度	風上側から 1列目	2列目	3列目以降	最後列
5 度	1.1	1.1	0.9	1.0
10度	1.6	1.2	1.1	1.3
20 度	2.2	1.4	1.4	1.5

表 7-1(2) アイランド設計用ピーク風力係数 $G_{x,min}$ の提案値 (メインフロート、順風(南風))

モジュール 傾斜角度	風上側から 1列目	2列目	3列目以降	最後列
5度	-0.5	-0.5	-0.5	-0.6
10 度	-0.9	-0.6	-0.5	-0.6
20 度	-1.4	-1.0	-0.6	-0.7

表 7-1(3) アイランド設計用ピーク風力係数 $G_{y, max}$ の提案値 (メインフロート、横風(西風))

モジュール 傾斜角度	風上側から 1列目	2列目	3列目以降	最後列
5 度	1.3	1.1	1.1	1.2
10 度	1.8	1.8	1.4	1.7
20 度	2.5	2.5	2.0	2.2

表 7-2(1) アイランド設計用風力係数 Gの提案値 (メインフロート、逆風(北風))

- 6						
	モジュール 傾斜角度	風上側から 1列目	2列目	3列目以降	最後列	
	5度	0.50	0.50	0.40	0.45	
	10 度	0.75	0.55	0.50	0.60	
	20 度	1.00	0.65	0.65	0.70	

表 7-2(2) アイランド設計用風力係数 Gの提案値 (メインフロート、順風(南風))

モジュール 傾斜角度	風上側から 1列目	2列目	3列目以降	最後列
5度	0.25	0.25	0.25	0.30
10 度	0.40	0.30	0.25	0.30
20 度	0.65	0.45	0.30	0.35



表 7-2(3) アイランド設計用風力係数 G の提案値 (メインフロート、横風(西風または東風))

モジュール 傾斜角度	風上側から 1列目	2列目	3列目以降	最後列
5 度	0.60	0.50	0.50	0.55
10度	0.80	0.80	0.65	0.80
20 度	1.15	1.15	0.90	1.00

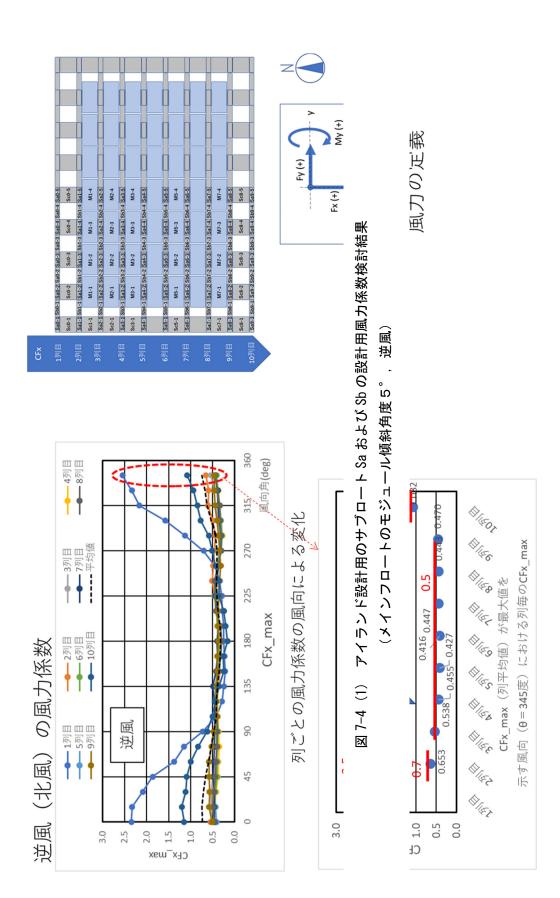


図 7-4(1) アイランド設計用のサブロート Sa および Sb の設計用風力係数検討結果 (メインフロートのモジュール傾斜角度 5°, 逆風)

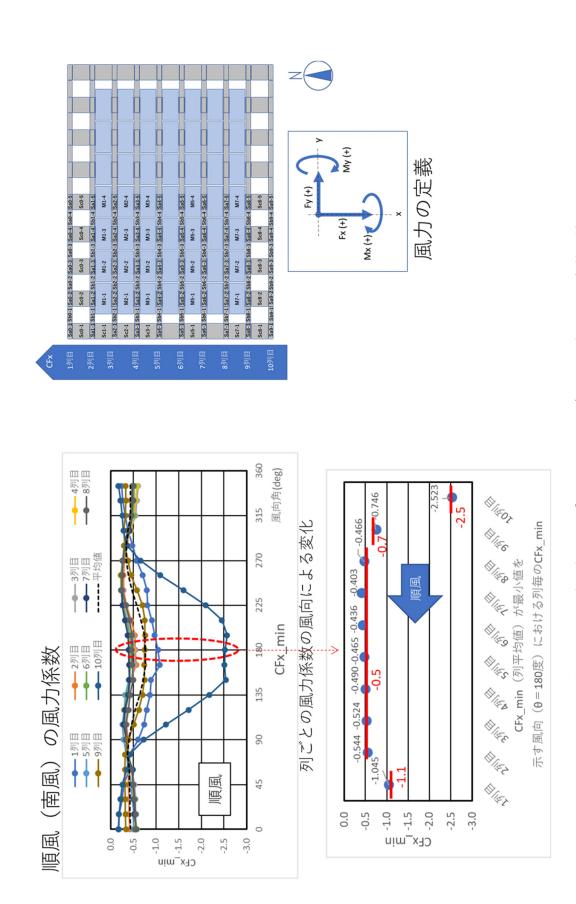


図 7-4(2) アイランド設計用のサブロート Sa および Sb の設計用風力係数検討結果(メインフロートのモジュール傾斜角度 5。,順風)

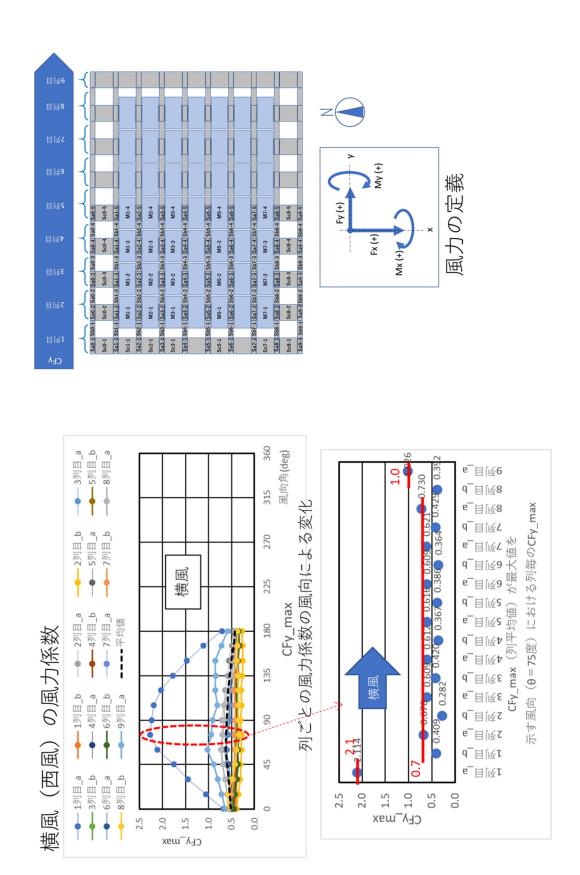


図 7-4(3) アイランド設計用のサブロート Sa および Sb の設計用風力係数検討結果(メインフロートのモジュール傾斜角度 5。,横風)

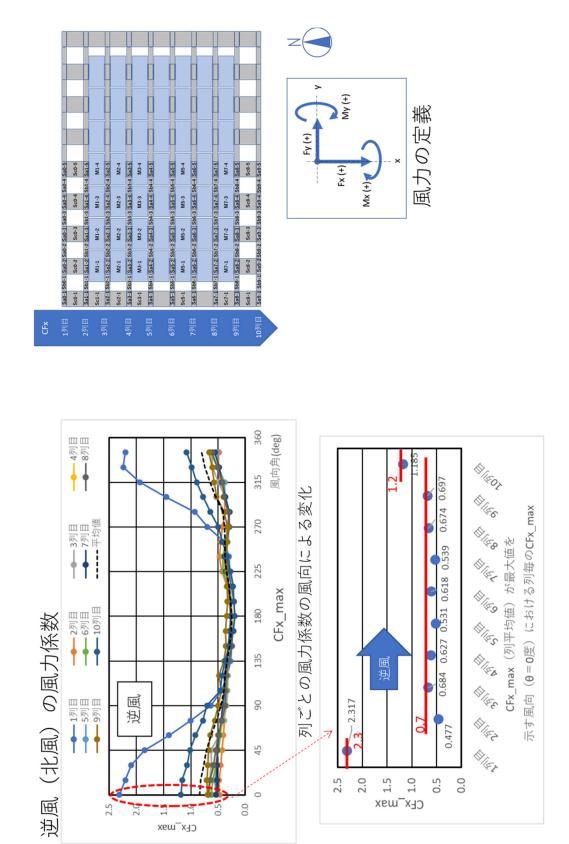


図 7-5(1) アイランド設計用のサブロート Sa および Sb の設計用風力係数検討結果 (メインフロートのモジュール傾斜角度 10° , 逆風)

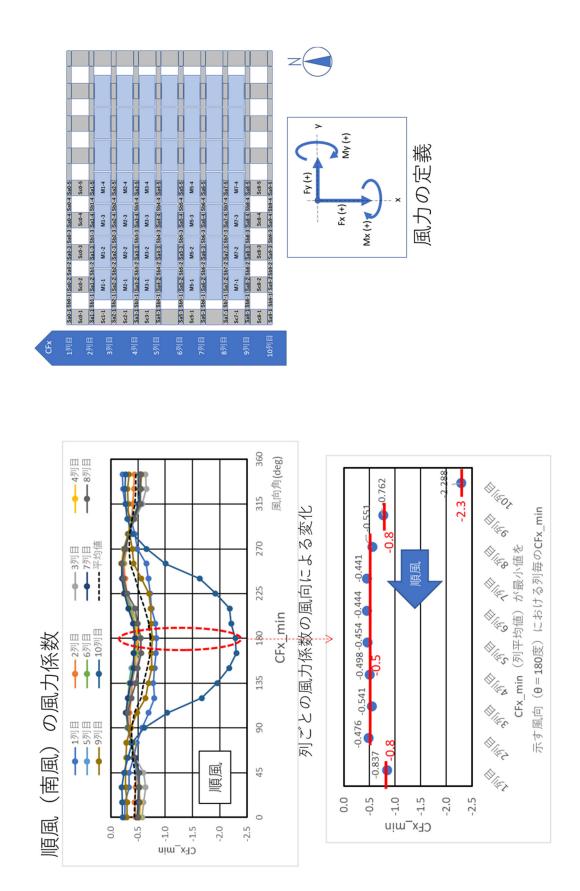
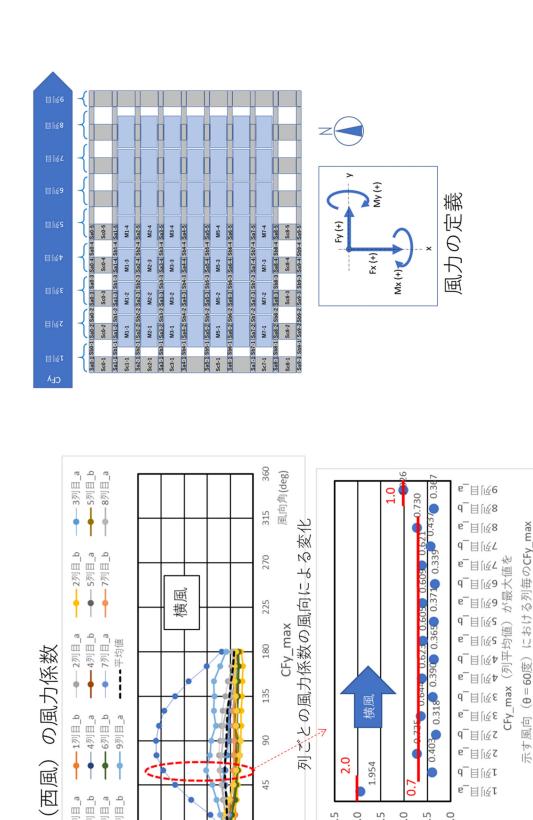



図 7-5(2) アイランド設計用のサブロート Sa および Sb の設計用風力係数検討結果 (メインフロートのモジュール傾斜角度 10° , 順風)

45

0.5 0.0

---3列目_b ——6列目_a

2.0 1.5 1.0

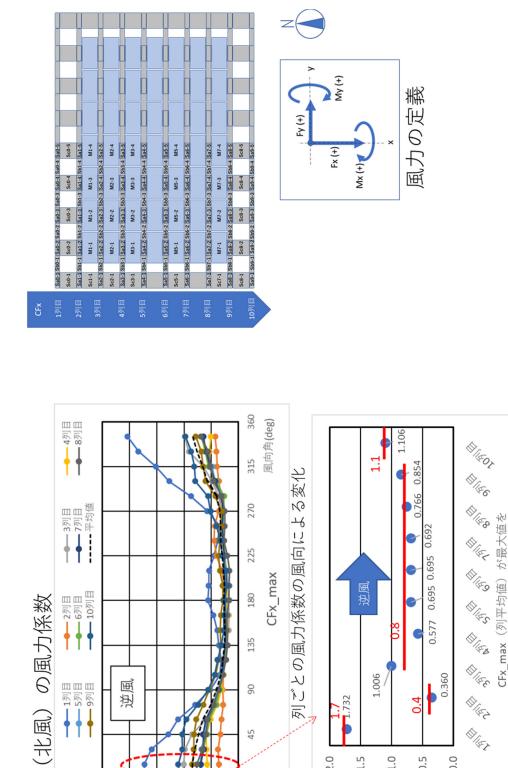
сғу_тах

2.5

横風

アイランド設計用のサブロート Sa および Sb の設計用風力係数検討結果 横風) (メインフロートのモジュール傾斜角度 10° 図 7-5(3)

ह_ | | [हिंद


q_⊟[l<u>€</u>τ

1列昌_3

2.0 1.954

CFy_max 1.0 1.5

0.5 0.0

90

45

0

1月]目 - 5月]目 - 9月]目

2.5

逆風

逆風

2.0

1.5

1.0

CEx_max

0.5 0.0

図 7-6(1) アイランド設計用のサブロート Sa および Sb の設計用風力係数検討結果 (海風) (メインフロートのモジュール傾斜角度 20°

 $(\theta = 15度)$ における列毎のCFx_max

示す風向

1.006

CFx_max i0 O

1.732

0.360

0.0

0.4

0.5

DIE.

DIE!

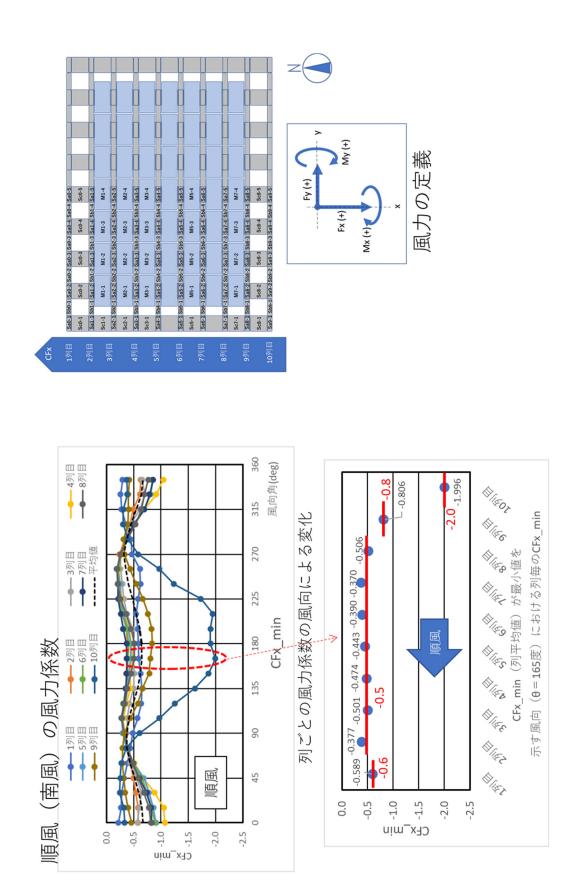
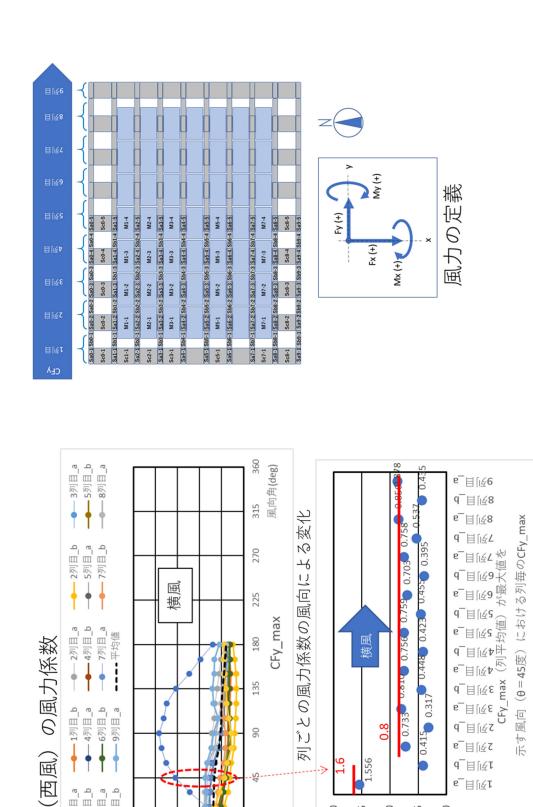



図 7-6(2) アイランド設計用のサブロート Sa および Sb の設計用風力係数検討結果 (メインフロートのモジュール傾斜角度 20°, 順風)

アイランド設計用のサブロート Sa および Sb の設計用風力係数検討結果 横風) (メインフロートのモジュール傾斜角度 20° **⊠** 7-6(3)

横風

2.5 2.0

CFγ_max ;5 ;0 1.0 0.5 0.0 **1**€1

0.0

0.5

CFy_max

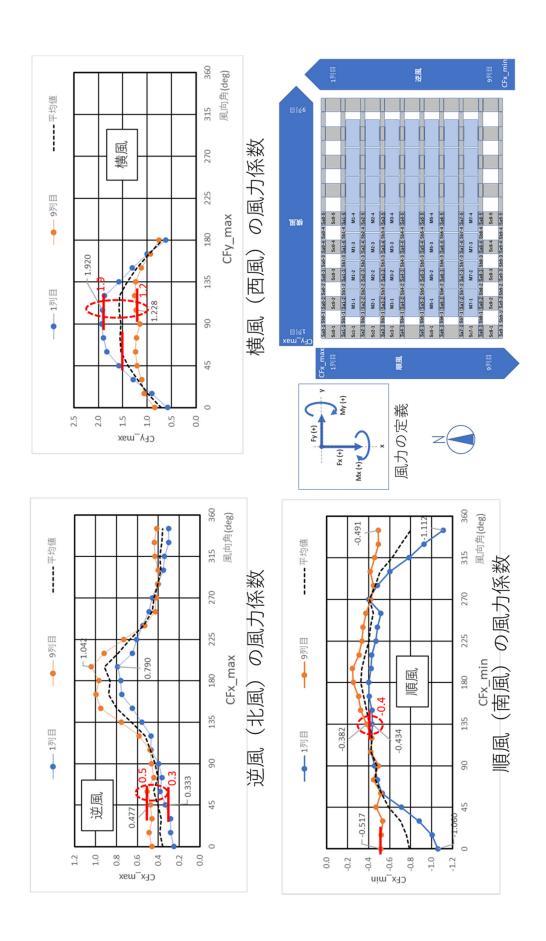


図 1-1(1) アイランド設計用のサブロート Sc の設計用風力係数検討結果(メインフロートのモジュール傾斜角度 2。,逆風・順風・横風)

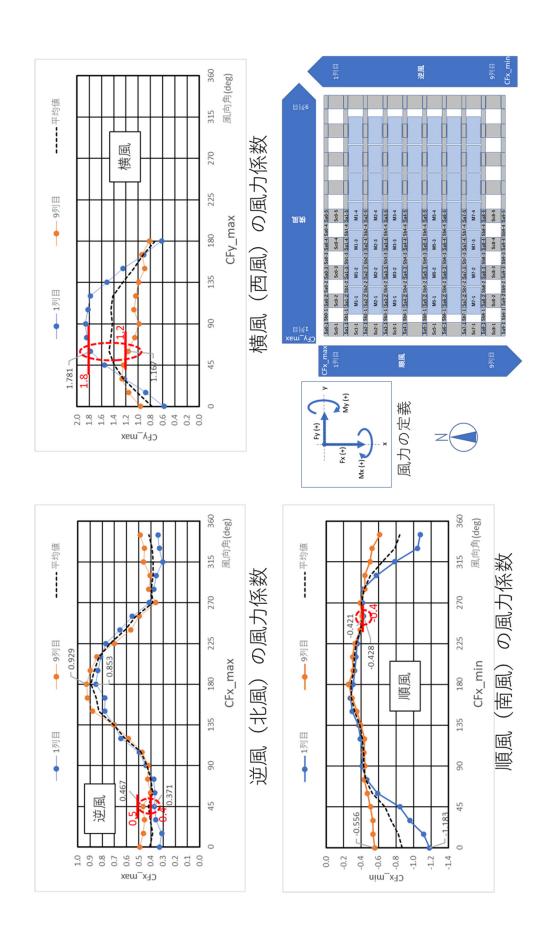


図 7-7(2) アイランド設計用のサブロート c の設計用風力係数検討結果 (メインフロートのモジュール傾斜角度 10°, 逆風・順風・横風)

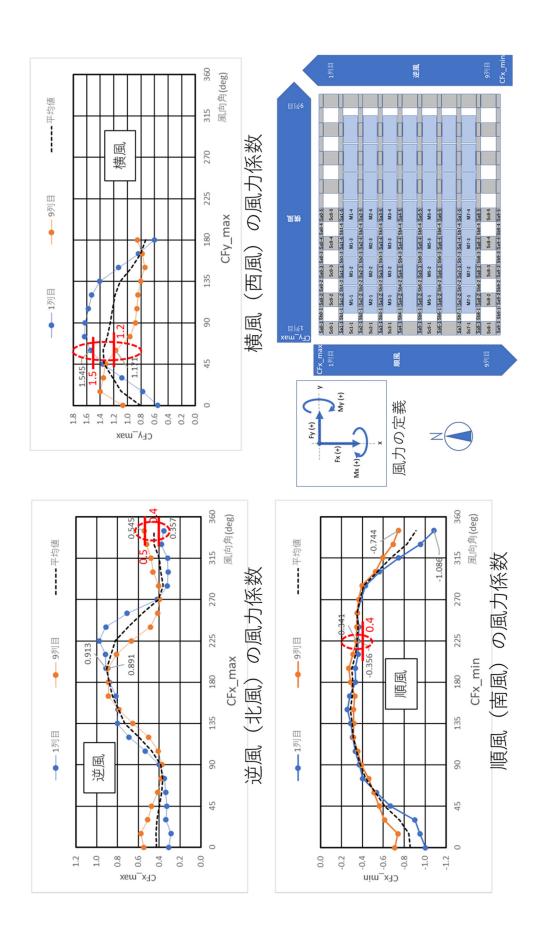


図 7-7(3) アイランド設計用のサブロートcの設計用風力係数検討結果(メインフロートのモジュール傾斜角度 20°,逆風・順風・横風)

表 7-3(1) アイランド設計用ピーク風力係数 $G_{x,max}$ の提案値 (サブフロート Sa、Sb、逆風(北風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	2列目	3列目以降	最後列
5度	2.5	0.7	0.5	1.1
10 度	2.3	0.7	0.7	1.2
20 度	1.7	0.4	0.8	1.1

表 7-3(2) アイランド設計用ピーク風力係数 $G_{x,min}$ の提案値 (サブフロート Sa、Sb、順風(南風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	2列目	3列目以降	最後列
5 度	-2.5	-0.7	-0.5	-1.1
10 度	-2.3	-0.8	-0.5	-0.8
20 度	-2.0	-0.8	-0.5	-0.6

表 7-3(3) アイランド設計用ピーク風力係数 *G*_{y,min} の提案値 (サブフロート Sa、Sb、横風(西風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	2列目	3列目以降	最後列
5 度	2.1	0.7	0.7	1.0
10 度	2.0	0.7	0.7	1.0
20 度	1.6	0.8	0.8	0.8

表 7-4(1) アイランド設計用ピーク風力係数 Gの提案値 (サブフロート Sa、Sb、逆風(北風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	2列目	3列目以降	最後列
5度	1.15	0.30	0.25	0.50
10 度	1.05	0.30	0.30	0.55
20 度	0.75	0.20	0.35	0.50

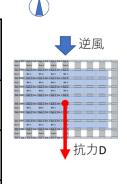


表 7-4(2) アイランド設計用ピーク風力係数 Gの提案値 (サブフロート Sa、Sb、順風(南風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	2列目	3列目以降	最後列
5 度	1.15	0.30	0.25	0.50
10 度	1.05	0.35	0.25	0.35
20 度	0.90	0.35	0.25	0.27

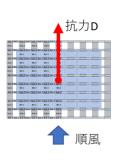


表 7-4(3) アイランド設計用ピーク風力係数 Gの提案値 (サブフロート Sa、Sb、横風(西または東風))

(ブブロー 1 00、00、展画(日の7.16水画))				
メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	2列目	3列目以降	最後列
5度	0.95	0.30	0.30	0.45
10度	0.90	0.30	0.30	0.45
20 度	0.75	0.35	0.35	0.35

表 7-5(1) アイランド設計用ピーク風力係数 $C_{\text{rx,max}}$ の提案値 (サブフロート Sc、逆風(北風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	最後列 (9列目)
5 度	0.3	0.5
10 度	0.4	0.5
20 度	0.4	0.5

表 7-5(2) アイランド設計用ピーク風力係数 $C_{Fx,min}$ の提案値 (サブフロート Sc、順風(南風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	最後列 (9列目)
5度	-0.4	-0.4
10度	-0.4	-0.4
20 度	-0.4	-0.4

表 7-5(3) アイランド設計用ピーク風力係数 *G*_{y、max} の提案値 (サブフロート Sc、横風(西風または東風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	最後列 (9列目)
5 度	1.5	1.2
10度	1.8	1.2
20度	1.5	1.2

表 7-6(1) アイランド設計用ピーク風力係数 Gの提案値 (サブフロート Sc、逆風(北風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	最後列 (9列目)
5 度	0.15	0.25
10度	0.20	0.25
20度	0.20	0.25



表 7-6(2) アイランド設計用ピーク風力係数 Gの提案値 (サブフロート Sc、順風(南風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	最後列 (9列目)
5 度	0.20	0.20
10 度	0.20	0.20
20 度	0.20	0.20

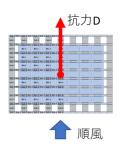
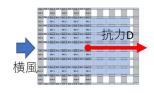
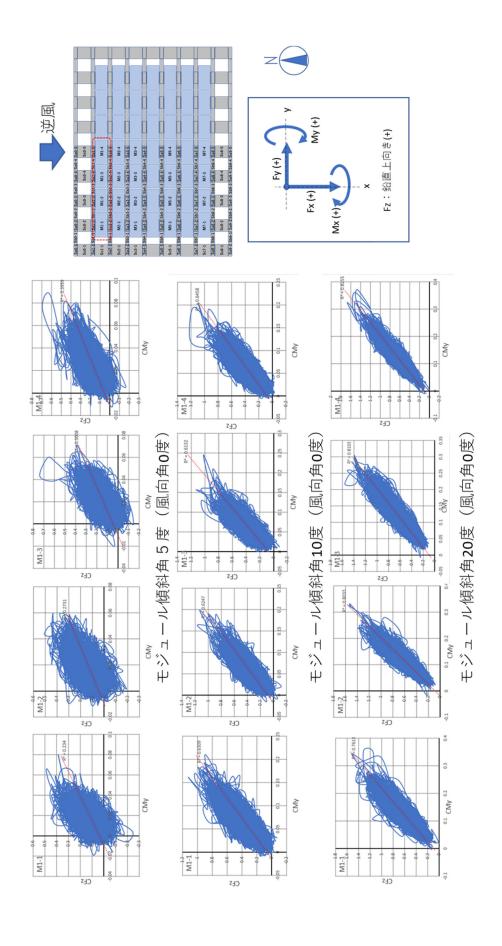



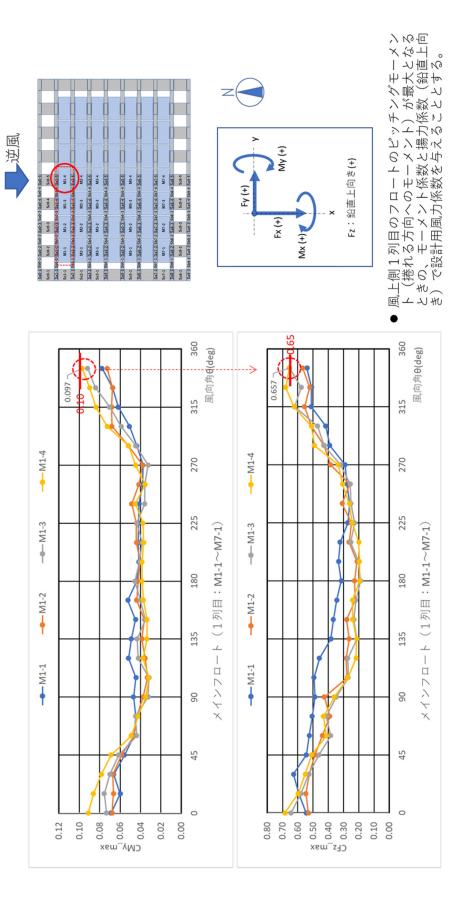
表 7-6(3) アイランド設計用ピーク風力係数 Gの提案値 (サブフロート Sc、横風(西風または東風))

メインフロート のモジュール 傾斜角度 ^注	風上側から 1列目	最後列 (9列目)
5 度	0.70	0.55
10度	0.80	0.55
20 度	0.70	0.55

7.2 風上側 1 列目の設計用風力係数


風上側1列目のメインフロートに着目し、フロートの捲れ上がり等の防止を検討するための風力係数について検討した。設計用風力係数の設定方針は次のとおりである。

- ① 北側、南側および西側(または東側)の1列目のフロートに着目し、それらが風上側となる風向(逆風、順風および横風)における捲れ方向へのモーメント(ピッチングモーメント)のピーク値が最も大きくなるフロート位置と風向を抽出する。
- ② 抽出したフロート位置と風向でのピークモーメント係数とピーク揚力係数(鉛直上向きの風力係数)を設計用風力係数とする。
- ③ NEDO ガイドラインでの設計用風力係数は、地表面粗度区分II(風洞実験での流入風の設定条件: $G_f=2.2$)のガスト影響係数で除した等価風力係数で与える。


なお、モーメント係数と揚力係数のそれぞれのピーク値の同時性は確認していないが、両者は比較的高い相関を有していることは把握している(図 7-8)。

逆風、順風および横風におけるピッチングモーメント(M_y および M_x)と揚力(F_z)の設計用風力係数の検討結果を図 7-9(1)~図 7-11(3)、表 7-7(1) ~表 7-7(3)に示す。ここで、順風および横風におけるピッチングモーメント(M_y および M_x)は風力の定義上、負の値となることに注意されたい。

また、表 7-7(1)~表 7-7(3)に示した風力係数はピーク風力係数であるので、JIS C 8955:2017 と同様の等価風力係数(=ピーク風力係数/ガスト影響係数)に換算し、その結果を表 7-8(1)~表 7-8(3)に示した。このとき、同 JIS での表現に合わせて荷重の向きを特定したうえで風力係数(モーメント係数 $C_{\rm M}$ と揚力係数 $C_{\rm L}$)は絶対値で表している。

風上側1列目のメインフロートにけるピッチングモーメント (C_{My}) と揚力の (C_{Fz}) の相関(風向角0度) 図 7-8

(逆風にけるピッチングモーメント係数 Gv と揚力係数 Gz:モジュール傾斜角度 5 度) 図 7-9(1) メインフロート風上側1列目の捲れに対する設計用風力係数の検討結果

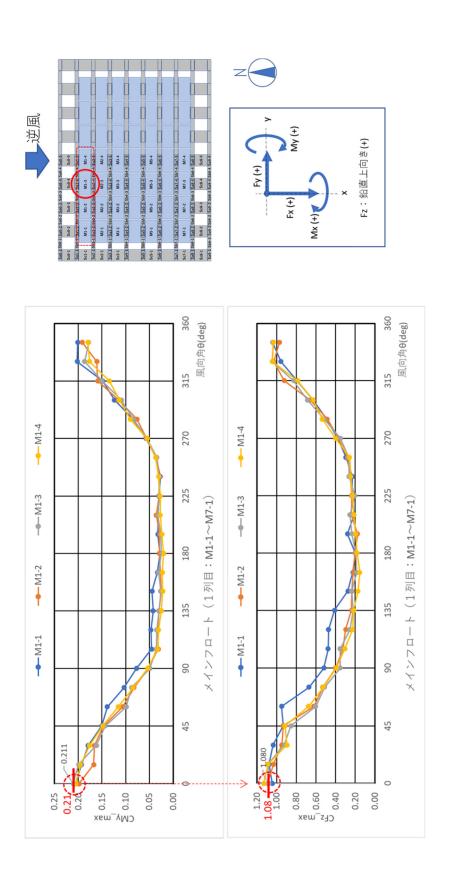


図 7-9(2) メインフロート風上側 1 列目の捲れに対する設計用風力係数の検討結果 (逆風にけるピッチングモーメント係数 G_y と揚力係数 G_z : モジュール傾斜角度 10 度)

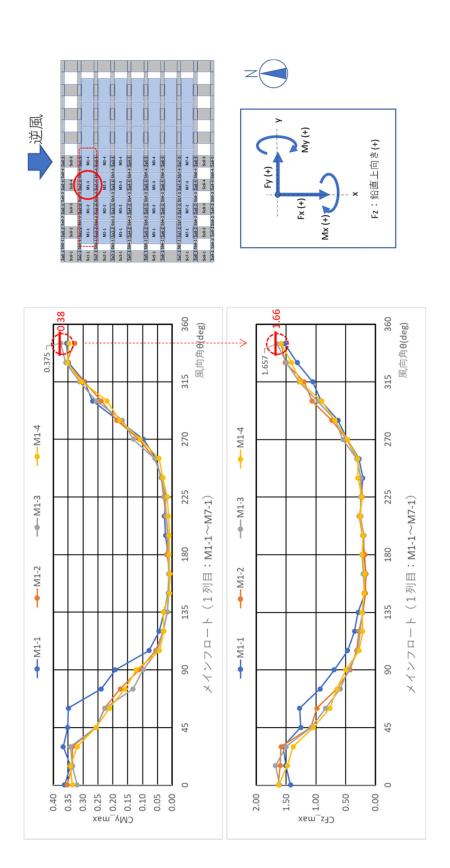


図 7-9(3) メインフロート風上側1列目の捲れに対する設計用風力係数の検討結果 (逆風にけるピッチングモーメント係数 Q_v と揚力係数 Q_z : モジュール傾斜角度 20 度)

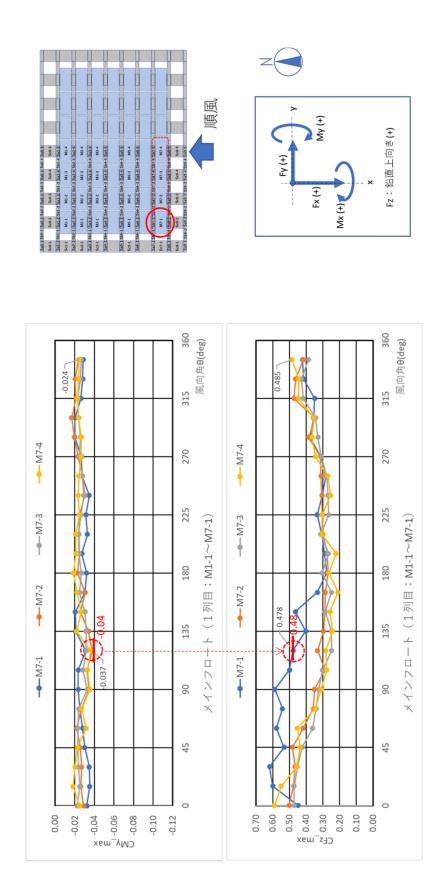
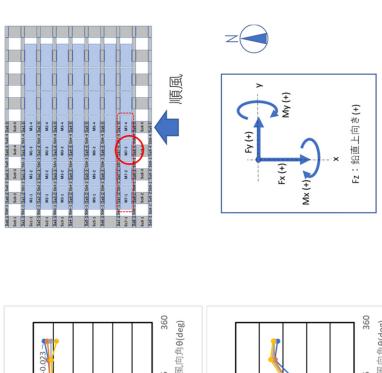



図 7-10(1) メインフロート風上側 1 列目の捲れに対する設計用風力係数の検討結果 (順風にけるピッチングモーメント係数 Q_y と揚力係数 Q_z : モジュール傾斜角度 5 度)

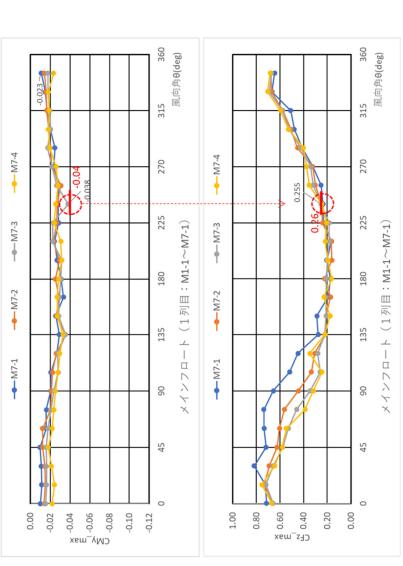


図 7-10(2) メインフロート風上側 1 列目の捲れに対する設計用風力係数の検討結果 (順風にけるピッチングモーメント係数 G_v と揚力係数 G_z : モジュール傾斜角度 10 度)

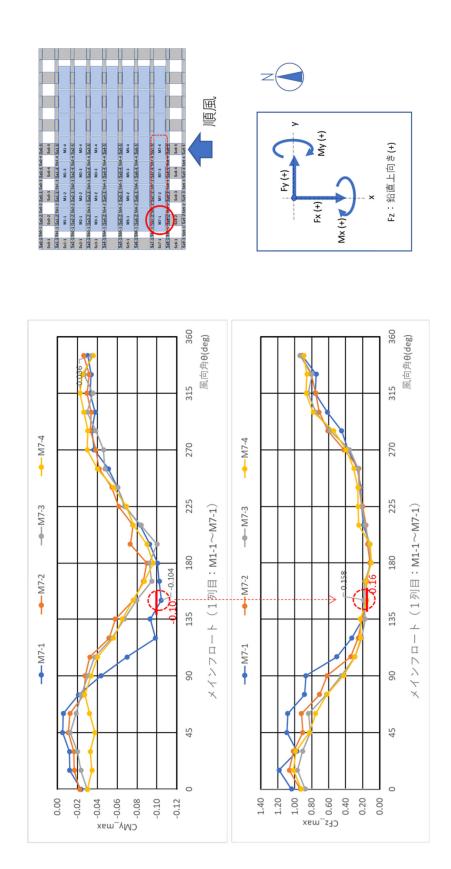


図 7-10(3) メインフロート風上側1列目の捲れに対する設計用風力係数の検討結果 (順風にけるピッチングモーメント係数 Q_v と揚力係数 Q_z : モジュール傾斜角度 20 度)

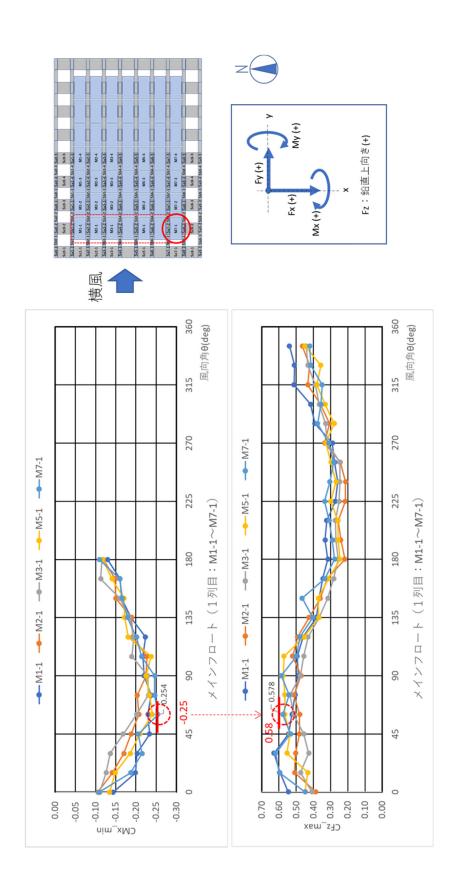


図 7-11(1) メインフロート風上側 1 列目の捲れに対する設計用風力係数の検討結果 (横風にけるピッチングモーメント係数 G_{κ} と揚力係数 G_{ϵ} : モジュール傾斜角度 5)

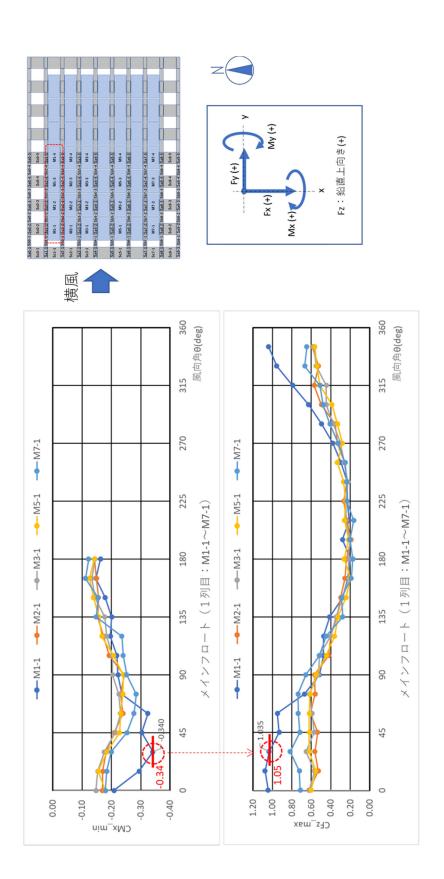


図 7-11(2) メインフロート風上側 1 列目の捲れに対する設計用風力係数の検討結果 (横風にけるピッチングモーメント係数 Q_x と揚力係数 G_2 : モジュール傾斜角度 10 度)

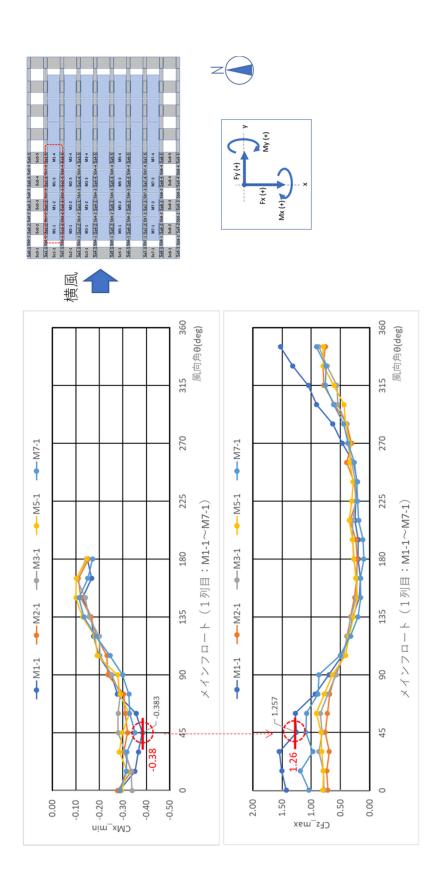


図 7-11(3) メインフロート風上側 1 列目の捲れに対する設計用風力係数の検討結果 (横風にけるピッチングモーメント係数 G_x と揚力係数 G_z : モジュール傾斜角度 20 度)

表 7-7(1) 風上側 1 列目のフロートの 設計用ピーク風力係数 $G_{My, max}$ および $G_{Z, max}$ の提案値 (メインフロート、逆風(北風))

モジュール 傾斜角度	$C_{ m My}$	$C_{ t Fz}$
5 度	0.10	0.65
10 度	0.21	1.08
20 度	0.38	1.66

表 7-7(2) 風上側 1 列目のフロートの 設計用ピーク風力係数 $G_{My,min}$ および $G_{Z,max}$ の提案値 (メインフロート、順風(南風))

モジュール 傾斜角度	$C_{ m My}$	C_{Fz}
5 度	-0.04	0.48
10 度	-0.04	0.26
20 度	-0.10	0.16

表 7-7(3) 風上側 1 列目のフロートの 設計用ピーク風力係数 G_{Mx,min} および G_{z,max} の提案値 (メインフロート、横風(西風))

モジュール 傾斜角度	$C_{ m My}$	$C_{ t Fz}$	
5 度	-0.25	0.58	
10度	-0.34	1.05	
20 度	-0.38	1.26	

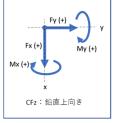


表 7-8(1) 風上側 1 列目のフロートの捲れ検討用 モーメント係数 G および揚力係数 G の提案値 (メインフロート、逆風(北風))

		1012.07
モジュール 傾斜角度	См	$C_{ m L}$
5 度	0.05	0.30
10 度	0.10	0.49
20 度	0.17	0.75

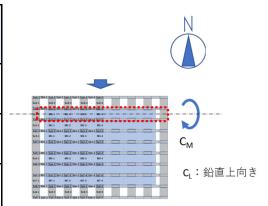


表 7-8(2) 風上側 1 列目のフロートの捲れ検討用 モーメント係数 G および揚力係数 C の提案値 (メインフロート、順風(南風))

	- 1 ()(()24 (1137247 /
モジュール 傾斜角度	$C_{ m M}$	$C_{ m L}$
5 度	0.02	0.22
10 度	0.02	0.12
20 度	0.05	0.07

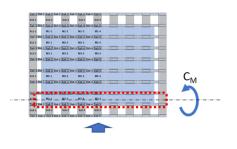
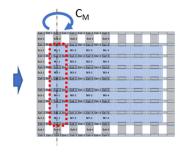



表 7-8(3) 風上側 1 列目のフロートの捲れ検討用 モーメント係数 G および揚力係数 G の提案値 (メインフロート、横風(西風または東風))

モジュール 傾斜角度	$C_{ m M}$	$C_{ m L}$
5 度	0.11	0.26
10 度	0.15	0.48
20 度	0.17	0.57

8. 実験写真

風洞の内観と実験模型の様子を写真8-1~写真8-8に示す。

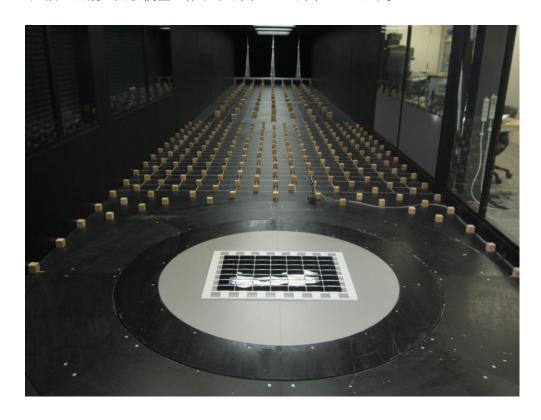


写真 8-1 風洞内観 (モジュールの傾斜角度 5度)

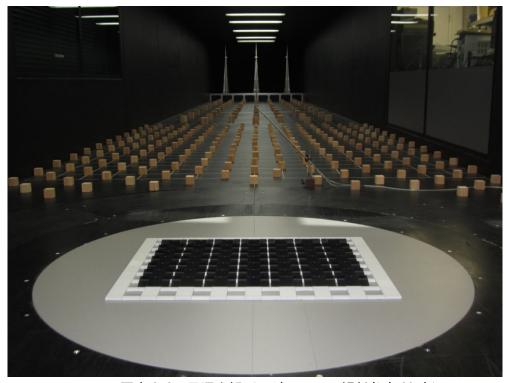


写真 8-2 風洞内観 (モジュールの傾斜角度 20度)

写真 8-3 実験模型 (モジュールの傾斜角度 5度)

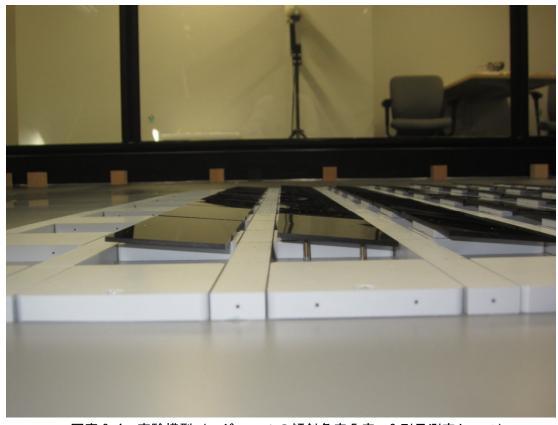


写真8-4 実験模型 (モジュールの傾斜角度5度、2列目測定ケース)

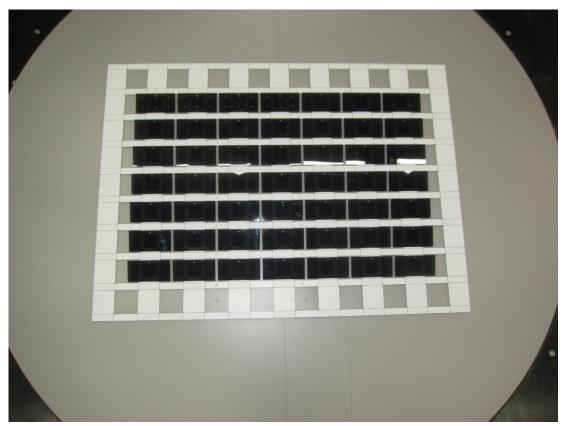


写真 8-5 実験模型 (モジュールの傾斜角度 10度)

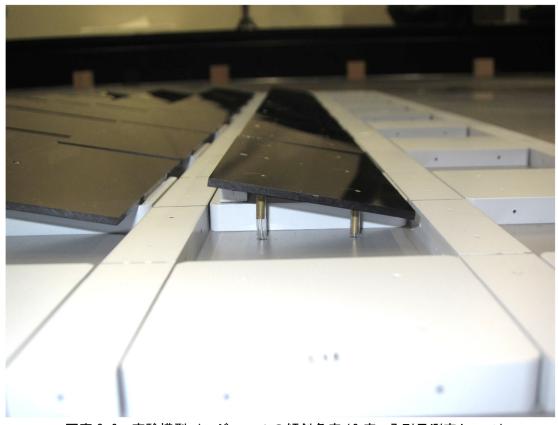


写真 8-6 実験模型 (モジュールの傾斜角度 10 度、7 列目測定ケース)

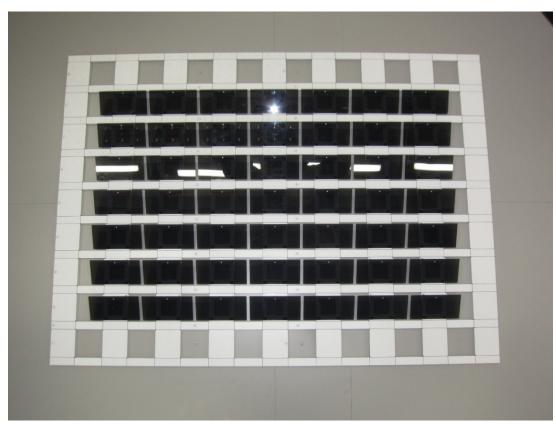


写真 8-7 実験模型 (モジュールの傾斜角度 20度)

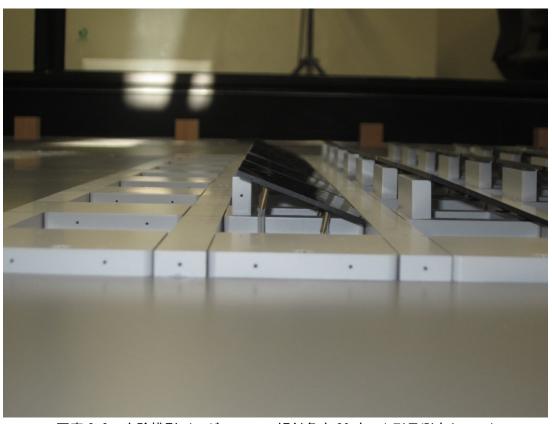


写真 8-8 実験模型 (モジュールの傾斜角度 20 度、1 列目測定ケース)

9. まとめ

太陽電池モジュールがフロートに直接取り付けられているシステムでは、太陽電池モジュールとフロートが一体の状態で風力係数を設定する必要があるが、その風力係数に関する既往の文献等はほとんどないことから、国内で導入されている典型的なフロートの形状を再現した縮小模型を用いて風洞実験を実施し、設計用風力係数に関する基礎資料を作成した。提案した設計用風力係数は、アイランド全体の風荷重を求めるための抗力係数や風上側1列目のフロートの捲れ検討用のモーメント係数、揚力係数であり、いずれも JIS C 8955:2017 での風圧荷重の算定式に適用できるように等価風力係数として与えている。ただし、本実験で再現したフロートの形状と大幅に異なる場合には、ここで示した風力係数が適用できないので、専門家の指導のもと風洞実験を行うことを推奨する。

	「究開発法人新エネルギー・」 :発電主力電源化推進技術開発		
結果として得られたもの	かです。		
	12	10	